Open Access
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Page(s) 895 - 901
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021088
Published online 14 October 2021
  1. Cui Y, Balshaw DM, Kwok RK, et al. The exposome: embracing the complexity for discovery in environmental health. Environ Health Perspect 2016 ; 124 : A137–A140. [PubMed] [Google Scholar]
  2. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008 ; 40 : 695–701. [CrossRef] [PubMed] [Google Scholar]
  3. Manolio TA, Collins FS, Cox NJet al. Finding the missing heritability of complex diseases. Nature 2009 ; 461 : 747–753. [CrossRef] [PubMed] [Google Scholar]
  4. Rappaport SMGenetic factors are not the major causes of chronic diseases. PLoS One 2016 ; 11 : e0154387. [CrossRef] [PubMed] [Google Scholar]
  5. Vermeulen R, Schymanski EL, Barabasi AL, Miller GW. The exposome and health: where chemistry meets biology. Science 2020; 367 : 392–6. [Google Scholar]
  6. Wild CP. Complementing the genome with an exposome: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 2005 ; 14 : 1847–1850. [CrossRef] [PubMed] [Google Scholar]
  7. Wild CPThe exposome: from concept to utility. Int J Epidemiol 2012 ; 41 : 24–32. [CrossRef] [PubMed] [Google Scholar]
  8. Rappaport SM, Barupal DK, Wishart Det al. The blood exposome and its role in discovering causes of disease. Environ Health Perspect 2014 ; 122 : 769–774. [CrossRef] [PubMed] [Google Scholar]
  9. Dennis KK, Marder E, Balshaw DMet al. Biomonitoring in the era of the exposome. Environ Health Perspect 2017 ; 125 : 502–510. [CrossRef] [PubMed] [Google Scholar]
  10. Bessonneau V, Gerona RR, Trowbridge J, et al. Gaussian graphical modeling of the serum exposome and metabolome reveals interactions between environmental chemicals and endogenous metabolites. Sci Rep 2021; 11 : 7607–22. [CrossRef] [PubMed] [Google Scholar]
  11. Barouki R, Gluckman PD, Grandjean Pet al. Developmental origins of non-communicable disease: implications for research and public health. Environ Health 2012 ; 11 : 42. [CrossRef] [PubMed] [Google Scholar]
  12. Chevrier C, Limon G, Monfort Cet al. Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort. Environ Health Perspect 2011 ; 119 : 1034–1041. [CrossRef] [PubMed] [Google Scholar]
  13. Barr DB, Bishop A, Needham LLConcentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod Toxicol 2007 ; 23 : 260–266. [CrossRef] [PubMed] [Google Scholar]
  14. David A, Chaker J, Léger T, et al. Acetaminophen metabolism revisited using non-targeted analyses: Implications for human biomonitoring. Environ Int 2021; 149 : 106388. [CrossRef] [PubMed] [Google Scholar]
  15. Neveu V, Moussy A, Rouaix Het al. Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 2017 ; 45 : D979–D984. [CrossRef] [PubMed] [Google Scholar]
  16. Wishart DS, Tzur D, Knox Cet al. hmdb: the human metabolome database. Nucleic Acids Res 2007 ; 35 : D521–D526. [CrossRef] [PubMed] [Google Scholar]
  17. Psychogios N, Hau DD, Peng Jet al. The human serum metabolome. PLoS One 2011 ; 6 : e16957. [CrossRef] [PubMed] [Google Scholar]
  18. Uppal K, Walker DI, Jones DPxMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem 2017 ; 89 : 1063–1067. [CrossRef] [PubMed] [Google Scholar]
  19. Tsugawa H, Cajka T, Kind Tet al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 2015 ; 12 : 523–526. [CrossRef] [PubMed] [Google Scholar]
  20. Chaker J, Gilles E, Léger T, et al. From metabolomics to HRMS-based exposomics: adapting peak picking and developing scoring for MS1 suspect screening. Anal Chem 2021; 93 : 1792–800. [CrossRef] [PubMed] [Google Scholar]
  21. Schymanski EL, Jeon J, Gulde Ret al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 2014 ; 48 : 2097–2098. [CrossRef] [PubMed] [Google Scholar]
  22. Vrijheid M, Slama R, Robinson Oet al. The human early-life exposome (helix): project rationale and design. Environ Health Perspect 2014 ; 12 : 535–544. [Google Scholar]
  23. Vineis P, Chadeau-Hyam M, Gmuender Het al. The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 2017 ; 220 : 142–151. [CrossRef] [PubMed] [Google Scholar]
  24. Balshaw DM, Collman GW, Gray KA, Thompson CLThe children’s health exposure analysis resource (chear): enabling research into the environmental influences on children’s health outcomes. Curr Opin Pediatr 2017 ; 29 : 385–389. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.