Open Access
Issue
Med Sci (Paris)
Volume 37, Number 10, Octobre 2021
Page(s) 910 - 919
Section Repères
DOI https://doi.org/10.1051/medsci/2021143
Published online 14 October 2021
  1. Madsen PL, Hasselbalch SG, Hagemann LP, et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 1995 ; 15 : 485–491. [CrossRef] [PubMed] [Google Scholar]
  2. Raichle ME. Two views of brain function. Trends Cogn Sci 2010 ; 14 : 180–190. [CrossRef] [PubMed] [Google Scholar]
  3. Gerwyn M, Maes M. Mechanisms explaining muscle fatigue and muscle pain in patients with myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs): a review of recent findings. Curr Rheumatol Rep 2017 ; 19 : 1. [CrossRef] [PubMed] [Google Scholar]
  4. Morris G, Maes M, Berk M, et al. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop?. Metab Brain Dis 2019 ; 34 : 385–415. [CrossRef] [PubMed] [Google Scholar]
  5. Sweetman E, Noble A, Edgar C, et al. Current research provides insight into the biological basis and diagnostic potential for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Diagnostics 2019 ; 9 : 73. [CrossRef] [Google Scholar]
  6. Jammes Y, Retornaz F. Understanding neuromuscular disorders in chronic fatigue syndrome. F1000Res 2019; 8. [PubMed] [Google Scholar]
  7. Jammes Y, Steinberg JG, Delliaux S, et al. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med 2009 ; 266 : 196–206. [CrossRef] [PubMed] [Google Scholar]
  8. Sweetman E, Kleffmann T, Edgar C, et al. A SWATH-MS analysis of myalgic encephalomyelitis/chronic fatigue syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. Jl Transl Med 2020; 18 : 365. [CrossRef] [Google Scholar]
  9. Missailidis D, Sanislav O, Allan CY, et al. Cell-based blood biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome. Int J Mol Sci 2020; 21 : 1142. [CrossRef] [Google Scholar]
  10. Jammes Y, Steinberg JG, Delliaux SChronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J Intern Med 2012 ; 272 : 74–84. [CrossRef] [PubMed] [Google Scholar]
  11. Naviaux RK, Naviaux JC, Li K, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA 2016 ; 113 : E5472–E5480. [CrossRef] [Google Scholar]
  12. Mavrommatis E, Fish EN, Platanias LCThe schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 2013 ; 33 : 206–210. [CrossRef] [PubMed] [Google Scholar]
  13. Feuillet V, Canard B, Trautmann A. Combining antivirals and immunomodulators to fight COVID-19. Trends Immunol 2021; 42 : 31–44. [CrossRef] [PubMed] [Google Scholar]
  14. Yamato M, Tamura Y, Eguchi A, et al. Brain Interleukin-1β and the intrinsic receptor antagonist control peripheral Toll-like receptor 3-mediated suppression of spontaneous activity in rats. PLoS One 2014 ; 9. [Google Scholar]
  15. Russell A, Hepgul N, Nikkheslat N, et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology 2019 ; 100 : 276–285. [CrossRef] [PubMed] [Google Scholar]
  16. Guerin MV, Regnier F, Feuillet V, et al. TGFβ blocks IFNα/β release and tumor rejection in spontaneous mammary tumors. Nat Commun 2019 ; 10 : 4131. [CrossRef] [PubMed] [Google Scholar]
  17. Sujobert P, Trautmann AConflicting signals for cancer treatment. Cancer Res 2016 ; 76 : 6768–6773. [PubMed] [Google Scholar]
  18. Jacek E, Fallon BA, Chandra A, et al. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J Neuroimmunol 2013 ; 255 : 85–91. [CrossRef] [PubMed] [Google Scholar]
  19. Bouneaud C, Kourilsky P, Bousso PImpact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of t cell clones escapes clonal deletion. Immunity 2000 ; 13 : 829–840. [CrossRef] [PubMed] [Google Scholar]
  20. Larson HJ, Hartigan-Go K, de Figueiredo AVaccine confidence plummets in the Philippines following dengue vaccine scare: why it matters to pandemic preparedness. Hum Vaccin Immunother 2019 ; 15 : 625–627. [CrossRef] [PubMed] [Google Scholar]
  21. Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5 : 1185–91. [CrossRef] [PubMed] [Google Scholar]
  22. Levine B, Mizushima N, Virgin HWAutophagy in immunity and inflammation. Nature 2011 ; 469 : 323–335. [CrossRef] [PubMed] [Google Scholar]
  23. Netea MG, Joosten LAB, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science 2016; 352 : aaf1098. [CrossRef] [PubMed] [Google Scholar]
  24. Netea MG, Quintin J, van der Meer JWMTrained immunity: a memory for innate host defense. Cell Host Microbe 2011 ; 9 : 355–361. [CrossRef] [PubMed] [Google Scholar]
  25. Naik S, Larsen SB, Gomez NCet al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 2017 ; 550 : 475–480. [CrossRef] [PubMed] [Google Scholar]
  26. Curtis N, Sparrow A, Ghebreyesus TA, et al. Considering BCG vaccination to reduce the impact of COVID-19. Lancet 2020; 395 : 1545–6. [Google Scholar]
  27. Berthelot J-M, Wendling D. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 2020; 87 : 31–6. [CrossRef] [PubMed] [Google Scholar]
  28. Piccione G, Fazio F, Caola G, et al. Daily rhythmicity of glycemia in four species of domestic animals under various feeding regimes. J Physiol Sci 2008 ; 58 : 271–275. [CrossRef] [PubMed] [Google Scholar]
  29. Jung UJ, Choi M-SObesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014 ; 15 : 6184–6223. [CrossRef] [PubMed] [Google Scholar]
  30. Cahill GF, Herrera MG, Morgan AP, et al. Hormone-fuel interrelationships during fasting. J Clin Invest 1966 ; 45 : 1751–1769. [CrossRef] [PubMed] [Google Scholar]
  31. Longo VD, Mattson MPFasting: molecular mechanisms and clinical applications. Cell Metab 2014 ; 19 : 181–192. [CrossRef] [PubMed] [Google Scholar]
  32. Wang A, Huen SC, Luan HH, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 2016 ; 166 : 1512–25.e12. [CrossRef] [PubMed] [Google Scholar]
  33. Sinclair U. The fasting cure. New York: M. Kennerly, 1911 ; 154 p. [Google Scholar]
  34. Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in cns autoimmunity by altering the gut microbiota. Cell Metab 2018 ; 27 : 1222–35.e6. [CrossRef] [PubMed] [Google Scholar]
  35. Goldszmid RS, Trinchieri GThe price of immunity. Nat Immunol 2012 ; 13 : 932–938. [CrossRef] [PubMed] [Google Scholar]
  36. Duscha A, Gisevius B, Hirschberg S, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 2020; 180 : 1067–80.e16. [CrossRef] [PubMed] [Google Scholar]
  37. Cantoni C, Dorsett Y, Fontana L, et al. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2020; 108575. [CrossRef] [PubMed] [Google Scholar]
  38. Adrion ER, Aucott J, Lemke KW, et al. Health care costs, utilization and patterns of care following Lyme disease. PLoS One 2015 ; 10 : e0116767. [CrossRef] [PubMed] [Google Scholar]
  39. Rebman AW, Bechtold KT, Yang T, et al. The clinical, symptom, and quality-of-life characterization of a well-defined group of patients with posttreatment lyme disease syndrome. Front Med (Lausanne) 2017 ; 4 : 224. [CrossRef] [PubMed] [Google Scholar]
  40. Rebman AW, Aucott JN. Post-treatment Lyme disease as a model for persistent symptoms in lyme disease. Front Med (Lausanne) 2020; 7 : 57. [CrossRef] [PubMed] [Google Scholar]
  41. Wormser GP, Dattwyler RJ, Shapiro ED, et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious diseases society of America. Clin Infect Dis 2006 ; 43 : 1089–1134. [CrossRef] [PubMed] [Google Scholar]
  42. Berende A, ter Hofstede HJM, Vos FJ, et al. Randomized trial of longer-term therapy for symptoms attributed to Lyme disease. N Engl J Med 2016 ; 374 : 1209–1220. [CrossRef] [PubMed] [Google Scholar]
  43. Steere AC. Posttreatment Lyme disease syndromes: distinct pathogenesis caused by maladaptive host responses. J Clin Invest 2020; 130 : 2148–51. [CrossRef] [PubMed] [Google Scholar]
  44. Fallon BA, Petkova E, Keilp JG, et al. A reappraisal of the US clinical trials of post-treatment lyme disease syndrome. Open Neurol J 2012 ; 6 : 79–87. [CrossRef] [PubMed] [Google Scholar]
  45. Delong AK, Blossom B, Maloney EL, et al. Antibiotic retreatment of Lyme disease in patients with persistent symptoms: a biostatistical review of randomized, placebo-controlled, clinical trials. Contemp Clin Trials 2012 ; 33 : 1132–1142. [CrossRef] [PubMed] [Google Scholar]
  46. Haute autorité de santé. Borréliose de Lyme et autres maladies vectorielles à tiques. 2018. https://www.has-sante.fr/upload/docs/application/pdf/2018-06/reco266_rbp_borreliose_de_lyme_cd_2018_06_13__recommandations.pdf. [Google Scholar]
  47. Garg K, Meriläinen L, Franz O, et al. Evaluating polymicrobial immune responses in patients suffering from tick-borne diseases. Sci Rep 2018 ; 8 : 15932. [CrossRef] [PubMed] [Google Scholar]
  48. Yilancioglu K, Cokol M. Design of high-order antibiotic combinations against M. tuberculosis by ranking and exclusion. Sci Rep 2019; 9 : 11876. [CrossRef] [PubMed] [Google Scholar]
  49. Sapi E, Kasliwala RS, Ismail H, et al. The long-term persistence of Borrelia burgdorferi antigens and dna in the tissues of a patient with Lyme disease. Antibiotics (Basel) 2019; 8. [Google Scholar]
  50. Gadila SKG, Rosoklija G, Dwork AJ, et al. Detecting Borrelia spirochetes: a case study with validation among autopsy specimens. Front Neurol 2021; 12. [Google Scholar]
  51. Feng J, Wang T, Shi W, et al. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect 2014 ; 3 : e49. [CrossRef] [PubMed] [Google Scholar]
  52. Aguero-Rosenfeld ME, Wang G, Schwartz I, et al. Diagnosis of Lyme borreliosis. Clin Microbiol Rev 2005 ; 18 : 484–509. [CrossRef] [PubMed] [Google Scholar]
  53. Donta STTetracycline therapy for chronic Lyme disease. Clin Infect Dis 1997 ; 25 : suppl 1S52–S56. [CrossRef] [PubMed] [Google Scholar]
  54. Wu X, Sharma B, Niles S, et al. Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrob Agents Chemother 2018 ; 62. [Google Scholar]
  55. Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019 ; 576 : 459–464. [CrossRef] [PubMed] [Google Scholar]
  56. Benoist C, Mathis DAutoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nat Immunol 2001 ; 2 : 797–801. [CrossRef] [PubMed] [Google Scholar]
  57. Wallin MT, Heltberg A, Kurtzke JFMultiple sclerosis in the Faroe Islands. 8. Notifiable diseases. Acta Neurol Scand 2010 ; 122 : 102–109. [PubMed] [Google Scholar]
  58. Hornig M, Montoya JG, Klimas NG, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Science Advances 2015 ; 1 : e1400121. [CrossRef] [PubMed] [Google Scholar]
  59. Piraino B, Vollmer-Conna U, Lloyd ARGenetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 2012 ; 26 : 552–558. [CrossRef] [PubMed] [Google Scholar]
  60. Steiner S, Becker SC, Hartwig J, et al. Autoimmunity-related Risk variants in PTPN22 and CTLA4 are associated with ME/CFS with infectious onset. Front Immunol 2020; 11. [PubMed] [Google Scholar]
  61. Shoenfeld Y, Agmon-Levin NASIA autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 2011 ; 36 : 4–8. [CrossRef] [PubMed] [Google Scholar]
  62. Gherardi R, Coquet M, Chérin P, et al. Macrophagic myofasciitis: an emerging entity. Lancet 1998 ; 352 : 347–352. [CrossRef] [PubMed] [Google Scholar]
  63. Gherardi RK, Coquet M, Cherin P, et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 2001 ; 124 : 1821–1831. [CrossRef] [PubMed] [Google Scholar]
  64. Passeri E, Villa C, Couette M, et al. Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J Inorg Biochem 2011 ; 105 : 1457–1463. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.