Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 10, Octobre 2021
|
|
---|---|---|
Page(s) | 910 - 919 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2021143 | |
Publié en ligne | 14 octobre 2021 |
- Madsen PL, Hasselbalch SG, Hagemann LP, et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 1995 ; 15 : 485–491. [CrossRef] [PubMed] [Google Scholar]
- Raichle ME. Two views of brain function. Trends Cogn Sci 2010 ; 14 : 180–190. [CrossRef] [PubMed] [Google Scholar]
- Gerwyn M, Maes M. Mechanisms explaining muscle fatigue and muscle pain in patients with myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs): a review of recent findings. Curr Rheumatol Rep 2017 ; 19 : 1. [CrossRef] [PubMed] [Google Scholar]
- Morris G, Maes M, Berk M, et al. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop?. Metab Brain Dis 2019 ; 34 : 385–415. [CrossRef] [PubMed] [Google Scholar]
- Sweetman E, Noble A, Edgar C, et al. Current research provides insight into the biological basis and diagnostic potential for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Diagnostics 2019 ; 9 : 73. [CrossRef] [Google Scholar]
- Jammes Y, Retornaz F. Understanding neuromuscular disorders in chronic fatigue syndrome. F1000Res 2019; 8. [PubMed] [Google Scholar]
- Jammes Y, Steinberg JG, Delliaux S, et al. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med 2009 ; 266 : 196–206. [CrossRef] [PubMed] [Google Scholar]
- Sweetman E, Kleffmann T, Edgar C, et al. A SWATH-MS analysis of myalgic encephalomyelitis/chronic fatigue syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. Jl Transl Med 2020; 18 : 365. [CrossRef] [Google Scholar]
- Missailidis D, Sanislav O, Allan CY, et al. Cell-based blood biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome. Int J Mol Sci 2020; 21 : 1142. [CrossRef] [Google Scholar]
- Jammes Y, Steinberg JG, Delliaux SChronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J Intern Med 2012 ; 272 : 74–84. [CrossRef] [PubMed] [Google Scholar]
- Naviaux RK, Naviaux JC, Li K, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA 2016 ; 113 : E5472–E5480. [CrossRef] [Google Scholar]
- Mavrommatis E, Fish EN, Platanias LCThe schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 2013 ; 33 : 206–210. [CrossRef] [PubMed] [Google Scholar]
- Feuillet V, Canard B, Trautmann A. Combining antivirals and immunomodulators to fight COVID-19. Trends Immunol 2021; 42 : 31–44. [CrossRef] [PubMed] [Google Scholar]
- Yamato M, Tamura Y, Eguchi A, et al. Brain Interleukin-1β and the intrinsic receptor antagonist control peripheral Toll-like receptor 3-mediated suppression of spontaneous activity in rats. PLoS One 2014 ; 9. [Google Scholar]
- Russell A, Hepgul N, Nikkheslat N, et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology 2019 ; 100 : 276–285. [CrossRef] [PubMed] [Google Scholar]
- Guerin MV, Regnier F, Feuillet V, et al. TGFβ blocks IFNα/β release and tumor rejection in spontaneous mammary tumors. Nat Commun 2019 ; 10 : 4131. [CrossRef] [PubMed] [Google Scholar]
- Sujobert P, Trautmann AConflicting signals for cancer treatment. Cancer Res 2016 ; 76 : 6768–6773. [PubMed] [Google Scholar]
- Jacek E, Fallon BA, Chandra A, et al. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J Neuroimmunol 2013 ; 255 : 85–91. [CrossRef] [PubMed] [Google Scholar]
- Bouneaud C, Kourilsky P, Bousso PImpact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of t cell clones escapes clonal deletion. Immunity 2000 ; 13 : 829–840. [CrossRef] [PubMed] [Google Scholar]
- Larson HJ, Hartigan-Go K, de Figueiredo AVaccine confidence plummets in the Philippines following dengue vaccine scare: why it matters to pandemic preparedness. Hum Vaccin Immunother 2019 ; 15 : 625–627. [CrossRef] [PubMed] [Google Scholar]
- Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5 : 1185–91. [CrossRef] [PubMed] [Google Scholar]
- Levine B, Mizushima N, Virgin HWAutophagy in immunity and inflammation. Nature 2011 ; 469 : 323–335. [CrossRef] [PubMed] [Google Scholar]
- Netea MG, Joosten LAB, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science 2016; 352 : aaf1098. [CrossRef] [PubMed] [Google Scholar]
- Netea MG, Quintin J, van der Meer JWMTrained immunity: a memory for innate host defense. Cell Host Microbe 2011 ; 9 : 355–361. [CrossRef] [PubMed] [Google Scholar]
- Naik S, Larsen SB, Gomez NCet al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 2017 ; 550 : 475–480. [CrossRef] [PubMed] [Google Scholar]
- Curtis N, Sparrow A, Ghebreyesus TA, et al. Considering BCG vaccination to reduce the impact of COVID-19. Lancet 2020; 395 : 1545–6. [CrossRef] [PubMed] [Google Scholar]
- Berthelot J-M, Wendling D. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine 2020; 87 : 31–6. [CrossRef] [PubMed] [Google Scholar]
- Piccione G, Fazio F, Caola G, et al. Daily rhythmicity of glycemia in four species of domestic animals under various feeding regimes. J Physiol Sci 2008 ; 58 : 271–275. [CrossRef] [PubMed] [Google Scholar]
- Jung UJ, Choi M-SObesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014 ; 15 : 6184–6223. [CrossRef] [PubMed] [Google Scholar]
- Cahill GF, Herrera MG, Morgan AP, et al. Hormone-fuel interrelationships during fasting. J Clin Invest 1966 ; 45 : 1751–1769. [CrossRef] [PubMed] [Google Scholar]
- Longo VD, Mattson MPFasting: molecular mechanisms and clinical applications. Cell Metab 2014 ; 19 : 181–192. [CrossRef] [PubMed] [Google Scholar]
- Wang A, Huen SC, Luan HH, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 2016 ; 166 : 1512–25.e12. [CrossRef] [PubMed] [Google Scholar]
- Sinclair U. The fasting cure. New York: M. Kennerly, 1911 ; 154 p. [Google Scholar]
- Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in cns autoimmunity by altering the gut microbiota. Cell Metab 2018 ; 27 : 1222–35.e6. [CrossRef] [PubMed] [Google Scholar]
- Goldszmid RS, Trinchieri GThe price of immunity. Nat Immunol 2012 ; 13 : 932–938. [CrossRef] [PubMed] [Google Scholar]
- Duscha A, Gisevius B, Hirschberg S, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 2020; 180 : 1067–80.e16. [CrossRef] [PubMed] [Google Scholar]
- Cantoni C, Dorsett Y, Fontana L, et al. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2020; 108575. [CrossRef] [PubMed] [Google Scholar]
- Adrion ER, Aucott J, Lemke KW, et al. Health care costs, utilization and patterns of care following Lyme disease. PLoS One 2015 ; 10 : e0116767. [CrossRef] [PubMed] [Google Scholar]
- Rebman AW, Bechtold KT, Yang T, et al. The clinical, symptom, and quality-of-life characterization of a well-defined group of patients with posttreatment lyme disease syndrome. Front Med (Lausanne) 2017 ; 4 : 224. [CrossRef] [PubMed] [Google Scholar]
- Rebman AW, Aucott JN. Post-treatment Lyme disease as a model for persistent symptoms in lyme disease. Front Med (Lausanne) 2020; 7 : 57. [CrossRef] [PubMed] [Google Scholar]
- Wormser GP, Dattwyler RJ, Shapiro ED, et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious diseases society of America. Clin Infect Dis 2006 ; 43 : 1089–1134. [CrossRef] [PubMed] [Google Scholar]
- Berende A, ter Hofstede HJM, Vos FJ, et al. Randomized trial of longer-term therapy for symptoms attributed to Lyme disease. N Engl J Med 2016 ; 374 : 1209–1220. [CrossRef] [PubMed] [Google Scholar]
- Steere AC. Posttreatment Lyme disease syndromes: distinct pathogenesis caused by maladaptive host responses. J Clin Invest 2020; 130 : 2148–51. [CrossRef] [PubMed] [Google Scholar]
- Fallon BA, Petkova E, Keilp JG, et al. A reappraisal of the US clinical trials of post-treatment lyme disease syndrome. Open Neurol J 2012 ; 6 : 79–87. [CrossRef] [PubMed] [Google Scholar]
- Delong AK, Blossom B, Maloney EL, et al. Antibiotic retreatment of Lyme disease in patients with persistent symptoms: a biostatistical review of randomized, placebo-controlled, clinical trials. Contemp Clin Trials 2012 ; 33 : 1132–1142. [CrossRef] [PubMed] [Google Scholar]
- Haute autorité de santé. Borréliose de Lyme et autres maladies vectorielles à tiques. 2018. https://www.has-sante.fr/upload/docs/application/pdf/2018-06/reco266_rbp_borreliose_de_lyme_cd_2018_06_13__recommandations.pdf. [Google Scholar]
- Garg K, Meriläinen L, Franz O, et al. Evaluating polymicrobial immune responses in patients suffering from tick-borne diseases. Sci Rep 2018 ; 8 : 15932. [CrossRef] [PubMed] [Google Scholar]
- Yilancioglu K, Cokol M. Design of high-order antibiotic combinations against M. tuberculosis by ranking and exclusion. Sci Rep 2019; 9 : 11876. [CrossRef] [PubMed] [Google Scholar]
- Sapi E, Kasliwala RS, Ismail H, et al. The long-term persistence of Borrelia burgdorferi antigens and dna in the tissues of a patient with Lyme disease. Antibiotics (Basel) 2019; 8. [Google Scholar]
- Gadila SKG, Rosoklija G, Dwork AJ, et al. Detecting Borrelia spirochetes: a case study with validation among autopsy specimens. Front Neurol 2021; 12. [Google Scholar]
- Feng J, Wang T, Shi W, et al. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg Microbes Infect 2014 ; 3 : e49. [CrossRef] [PubMed] [Google Scholar]
- Aguero-Rosenfeld ME, Wang G, Schwartz I, et al. Diagnosis of Lyme borreliosis. Clin Microbiol Rev 2005 ; 18 : 484–509. [CrossRef] [PubMed] [Google Scholar]
- Donta STTetracycline therapy for chronic Lyme disease. Clin Infect Dis 1997 ; 25 : suppl 1S52–S56. [CrossRef] [PubMed] [Google Scholar]
- Wu X, Sharma B, Niles S, et al. Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrob Agents Chemother 2018 ; 62. [Google Scholar]
- Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019 ; 576 : 459–464. [CrossRef] [PubMed] [Google Scholar]
- Benoist C, Mathis DAutoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nat Immunol 2001 ; 2 : 797–801. [CrossRef] [PubMed] [Google Scholar]
- Wallin MT, Heltberg A, Kurtzke JFMultiple sclerosis in the Faroe Islands. 8. Notifiable diseases. Acta Neurol Scand 2010 ; 122 : 102–109. [PubMed] [Google Scholar]
- Hornig M, Montoya JG, Klimas NG, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Science Advances 2015 ; 1 : e1400121. [CrossRef] [PubMed] [Google Scholar]
- Piraino B, Vollmer-Conna U, Lloyd ARGenetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 2012 ; 26 : 552–558. [CrossRef] [PubMed] [Google Scholar]
- Steiner S, Becker SC, Hartwig J, et al. Autoimmunity-related Risk variants in PTPN22 and CTLA4 are associated with ME/CFS with infectious onset. Front Immunol 2020; 11. [PubMed] [Google Scholar]
- Shoenfeld Y, Agmon-Levin NASIA autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 2011 ; 36 : 4–8. [CrossRef] [PubMed] [Google Scholar]
- Gherardi R, Coquet M, Chérin P, et al. Macrophagic myofasciitis: an emerging entity. Lancet 1998 ; 352 : 347–352. [CrossRef] [PubMed] [Google Scholar]
- Gherardi RK, Coquet M, Cherin P, et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 2001 ; 124 : 1821–1831. [CrossRef] [PubMed] [Google Scholar]
- Passeri E, Villa C, Couette M, et al. Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J Inorg Biochem 2011 ; 105 : 1457–1463. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.