Open Access
Issue
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
Page(s) 654 - 659
Section Repères
DOI https://doi.org/10.1051/medsci/2021089
Published online 28 June 2021
  1. Blackfan KD, Wolbach SB. Vitamin A deficiency in infants, a clinical and pathological study. J Pediatr 1933 ; 3 : 679–706. [Google Scholar]
  2. Blackfan KD, May CD. Inspissation of secretion, dilation of the ducts and acini, atrophy and fibrosis of the pancreas in infants. J Pediatr 1938 ; 13 : 627–634. [Google Scholar]
  3. Fanconi G, Uehlinger E, Knauer C. Das coeliakiesyndrom bei angeborenerzysticher pankreasfibromatose und bronchiektasien. Wien Med Wochenschr 1936 ; 86 : 753–756. [Google Scholar]
  4. Farber S, Shwachman H, Maddock CL. Pancreatic function and disease in early life. I. Pancreatic enzyme activity and the celiac syndrome. J Clin Invest 1943 ; 20 : 827–833. [Google Scholar]
  5. Shwachman H, Patterson P, Farber S. Significance of altered viscosity of duodenal content in pancreatic fibrosis (mucoviscidosis). AMA Am J Dis Child 1950 ; 80 : 864–865. [PubMed] [Google Scholar]
  6. May CD. Fibrosis of the pancreas in infants and children. Proc R Soc Med 1944 ; 37 : 311–313. [PubMed] [Google Scholar]
  7. Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study. Am J Dis Child 1938 ; 56 : 344–399. [Google Scholar]
  8. Howard PJ. Familial character of fibrocystic disease of the pancreas. Am J Dis Child 1944 ; 68 : 330–332. [Google Scholar]
  9. Andersen DH, Hodges RC. Celiac syndrome V. Genetics of cystic fibrosis of the pancreas with consideration of the etiology. Am J Dis Child 1946 ; 72 : 62–80. [CrossRef] [PubMed] [Google Scholar]
  10. Lowe CU, May CD, Reed SC. Fibrosis of pancreas in infants and children: statistical study of clinical and hereditary features. Am J Dis Child 1949 ; 78 : 349–374. [CrossRef] [PubMed] [Google Scholar]
  11. Darling RC, di Sant’Agnese PA, Perera GA, Andersen DH. Electrolyte abnormalities of the sweat in fibrocystic disease of pancreas. Am J M Sc 1953; 225 : 67–70. [Google Scholar]
  12. Di Sant’Agnese PA, Darling RC, Perera GA, Shea E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. Pediatrics 1953 ; 12 : 549–563. [PubMed] [Google Scholar]
  13. Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959 ; 23 : 545–549. [PubMed] [Google Scholar]
  14. Taussig LM. Cystic fibrosis. New York: Thieme-Stratton, 1984 : 498 p [Google Scholar]
  15. Shwachman H, Kulczycki LL. Long-term study of one hundred five patients with cystic fibrosis. Studies made over a five- to fourteen-year period. AMA. Am J Dis Child 1958 ; 96 : 6–15. [Google Scholar]
  16. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951 ; 23 : 110–127. [CrossRef] [PubMed] [Google Scholar]
  17. Kaplan JC, Delpech M. Biologie moléculaire et médecine, 3e ed. Collection De la biologie à la clinique. Paris : Flammarion Médecine-Sciences, 2007 : 820 p. [Google Scholar]
  18. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976 ; 260 : 799–802. [CrossRef] [PubMed] [Google Scholar]
  19. Teulon J. Le patch-clamp en bref. Med Sci (Paris) 2004 ; 20 : 550. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Welsh MJ. An apical-membrane chloride channel in human tracheal epithelium. Science 1986 ; 232 : 1648–1650. [CrossRef] [PubMed] [Google Scholar]
  21. Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983 ; 301 : 421–422. [CrossRef] [PubMed] [Google Scholar]
  22. Knowles MR, Gatzy JT, Boucher RC. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Eng J Med 1981 ; 305 : 1489–1495. [Google Scholar]
  23. Widdicombe JH, Welsh MJ, Finkbeiner WE. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc Natl Acad Sci USA 1985 ; 82 : 6167–6171. [Google Scholar]
  24. Goossens M. Biologie de la mucoviscidose : progrès récents et perspectives. Med Sci (Paris) 1991 ; 7 : 1048–1051. [Google Scholar]
  25. Tsui LC, Buchwald M, Barker D, et al. Cystic fibrosis locus defined by a genetically polymorphic DNA marker. Science 1985 ; 230 : 1054–1057. [CrossRef] [PubMed] [Google Scholar]
  26. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989 ; 245 : 1059–1065. [PubMed] [Google Scholar]
  27. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
  28. Kerem BS, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989 ; 245 : 1073–1080. [PubMed] [Google Scholar]
  29. Tsui LC. Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the cystic fibrosis genetic analysis consortium. Hum Mutat 1992 ; 1 : 197–203. [CrossRef] [PubMed] [Google Scholar]
  30. Férec C, Mercier B, Audrézet MP. Les mutations de la mucoviscidose : du génotype au phénotype. Med Sci (Paris) 1994 ; 10 : 631–639. [Google Scholar]
  31. Férec C. La mucoviscidose : du gène à la thérapeutique. Med Sci (Paris) 2021; 37 : 618–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.