Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 6-7, Juin-Juillet 2021
Page(s) 654 - 659
Section Repères
DOI https://doi.org/10.1051/medsci/2021089
Publié en ligne 28 juin 2021
  1. Blackfan KD, Wolbach SB. Vitamin A deficiency in infants, a clinical and pathological study. J Pediatr 1933 ; 3 : 679–706. [Google Scholar]
  2. Blackfan KD, May CD. Inspissation of secretion, dilation of the ducts and acini, atrophy and fibrosis of the pancreas in infants. J Pediatr 1938 ; 13 : 627–634. [Google Scholar]
  3. Fanconi G, Uehlinger E, Knauer C. Das coeliakiesyndrom bei angeborenerzysticher pankreasfibromatose und bronchiektasien. Wien Med Wochenschr 1936 ; 86 : 753–756. [Google Scholar]
  4. Farber S, Shwachman H, Maddock CL. Pancreatic function and disease in early life. I. Pancreatic enzyme activity and the celiac syndrome. J Clin Invest 1943 ; 20 : 827–833. [Google Scholar]
  5. Shwachman H, Patterson P, Farber S. Significance of altered viscosity of duodenal content in pancreatic fibrosis (mucoviscidosis). AMA Am J Dis Child 1950 ; 80 : 864–865. [PubMed] [Google Scholar]
  6. May CD. Fibrosis of the pancreas in infants and children. Proc R Soc Med 1944 ; 37 : 311–313. [PubMed] [Google Scholar]
  7. Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study. Am J Dis Child 1938 ; 56 : 344–399. [Google Scholar]
  8. Howard PJ. Familial character of fibrocystic disease of the pancreas. Am J Dis Child 1944 ; 68 : 330–332. [Google Scholar]
  9. Andersen DH, Hodges RC. Celiac syndrome V. Genetics of cystic fibrosis of the pancreas with consideration of the etiology. Am J Dis Child 1946 ; 72 : 62–80. [CrossRef] [PubMed] [Google Scholar]
  10. Lowe CU, May CD, Reed SC. Fibrosis of pancreas in infants and children: statistical study of clinical and hereditary features. Am J Dis Child 1949 ; 78 : 349–374. [CrossRef] [PubMed] [Google Scholar]
  11. Darling RC, di Sant’Agnese PA, Perera GA, Andersen DH. Electrolyte abnormalities of the sweat in fibrocystic disease of pancreas. Am J M Sc 1953; 225 : 67–70. [Google Scholar]
  12. Di Sant’Agnese PA, Darling RC, Perera GA, Shea E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. Pediatrics 1953 ; 12 : 549–563. [PubMed] [Google Scholar]
  13. Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959 ; 23 : 545–549. [PubMed] [Google Scholar]
  14. Taussig LM. Cystic fibrosis. New York: Thieme-Stratton, 1984 : 498 p [Google Scholar]
  15. Shwachman H, Kulczycki LL. Long-term study of one hundred five patients with cystic fibrosis. Studies made over a five- to fourteen-year period. AMA. Am J Dis Child 1958 ; 96 : 6–15. [Google Scholar]
  16. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951 ; 23 : 110–127. [CrossRef] [PubMed] [Google Scholar]
  17. Kaplan JC, Delpech M. Biologie moléculaire et médecine, 3e ed. Collection De la biologie à la clinique. Paris : Flammarion Médecine-Sciences, 2007 : 820 p. [Google Scholar]
  18. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976 ; 260 : 799–802. [CrossRef] [PubMed] [Google Scholar]
  19. Teulon J. Le patch-clamp en bref. Med Sci (Paris) 2004 ; 20 : 550. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Welsh MJ. An apical-membrane chloride channel in human tracheal epithelium. Science 1986 ; 232 : 1648–1650. [CrossRef] [PubMed] [Google Scholar]
  21. Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983 ; 301 : 421–422. [CrossRef] [PubMed] [Google Scholar]
  22. Knowles MR, Gatzy JT, Boucher RC. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Eng J Med 1981 ; 305 : 1489–1495. [Google Scholar]
  23. Widdicombe JH, Welsh MJ, Finkbeiner WE. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc Natl Acad Sci USA 1985 ; 82 : 6167–6171. [Google Scholar]
  24. Goossens M. Biologie de la mucoviscidose : progrès récents et perspectives. Med Sci (Paris) 1991 ; 7 : 1048–1051. [Google Scholar]
  25. Tsui LC, Buchwald M, Barker D, et al. Cystic fibrosis locus defined by a genetically polymorphic DNA marker. Science 1985 ; 230 : 1054–1057. [CrossRef] [PubMed] [Google Scholar]
  26. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989 ; 245 : 1059–1065. [PubMed] [Google Scholar]
  27. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
  28. Kerem BS, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989 ; 245 : 1073–1080. [PubMed] [Google Scholar]
  29. Tsui LC. Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the cystic fibrosis genetic analysis consortium. Hum Mutat 1992 ; 1 : 197–203. [CrossRef] [PubMed] [Google Scholar]
  30. Férec C, Mercier B, Audrézet MP. Les mutations de la mucoviscidose : du génotype au phénotype. Med Sci (Paris) 1994 ; 10 : 631–639. [Google Scholar]
  31. Férec C. La mucoviscidose : du gène à la thérapeutique. Med Sci (Paris) 2021; 37 : 618–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.