Free Access
Med Sci (Paris)
Volume 37, Number 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Page(s) 528 - 534
Section La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Published online 18 May 2021
  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963 ; 32 : 338–343. [PubMed] [Google Scholar]
  2. Brosco JP, Paul DB. The political history of PKU: reflections on 50 years of newborn screening. Pediatrics 2013 ; 132 : 987–989. [CrossRef] [PubMed] [Google Scholar]
  3. Coutant R, Feillet F. Présentation de l’état des lieux du dépistage néonatal en France. Med Sci (Paris) 2018; 34 (hors série n° 1) : 19–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Cohen DJ, Reynolds MR. Interpreting the results of cost-effectiveness studies. J Am Coll Cardiol 2008 ; 52 : 2119–2126. [CrossRef] [PubMed] [Google Scholar]
  5. Pike J, Grosse SD. Friction cost estimates of productivity costs in cost-of-illness studies in comparison with human capital estimates: a review. Appl Health Econ Health Policy 2018 ; 16 : 765–778. [CrossRef] [PubMed] [Google Scholar]
  6. Grosse SD, Pike J, Soelaeman R, Tilford JM. Quantifying family spillover effects in economic evaluations: Measurement and valuation of informal care time. Pharmacoeconomics 2019 ; 37 : 461–473. [CrossRef] [PubMed] [Google Scholar]
  7. Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children’s exposure to lead in the United States. Environ Health Perspect 2002 ; 110 : 563–569. [CrossRef] [PubMed] [Google Scholar]
  8. Grosse SD, Van Vliet G. How many deaths can be prevented by newborn screening for congenital adrenal hyperplasia?. Horm Res 2007 ; 67 : 284–291. [PubMed] [Google Scholar]
  9. Cherella CE, Wassner AJ. Congenital hypothyroidism: insights into pathogenesis and treatment. Int J Pediatr Endocrinol 2017 ; 2017 : 11. [CrossRef] [PubMed] [Google Scholar]
  10. Braslavsky D, Méndez MV, Prieto L, et al. Pilot neonatal screening program for central congenital hypothyroidism: Evidence of significant detection. Horm Res Paediatr 2017 ; 88 : 274–280. [CrossRef] [PubMed] [Google Scholar]
  11. Naafs JC, Marchal JP, Fliers E, et al. Cognitive and motor outcome in patients with early-detected central congenital hypothyroidism compared with siblings. J Clin Endocrinol Metab 2021; 106 : e1231–9. [CrossRef] [PubMed] [Google Scholar]
  12. Alm J, Hagenfeldt L, Larsson A, Lundberg K. Incidence of congenital hypothyroidism: retrospective study of neonatal laboratory screening versus clinical symptoms as indicators leading to diagnosis. Br Med J 1984 ; 289 : 1171–1175. [Google Scholar]
  13. Pitts L, McCormick W, Mick GJ. Congenital hypothyroidism: 8-year experience using 2 newborn screens in Alabama. Horm Res Paediatr 2019 ; 91 : 319–328. [CrossRef] [PubMed] [Google Scholar]
  14. Kemper AR, Grosse SD, Baker M, et al. Treatment discontinuation within 3 years of levothyroxine initiation among children diagnosed with congenital hypothyroidism. J Pediatr 2020; 223 : 136–40. [CrossRef] [PubMed] [Google Scholar]
  15. Caiulo S, Corbetta C, Di Frenna M, et al. Newborn screening for congenital hypothyroidism: the benefit of using differential TSH cutoffs in a two-screen program. J Clin Endocrinol Metab 2021; 106 : e338–49. [CrossRef] [PubMed] [Google Scholar]
  16. Dussault JH. The anecdotal history of screening for congenital hypothyroidism. J Clin Endocrinol Metab 1999 ; 84 : 4332–4334. [CrossRef] [PubMed] [Google Scholar]
  17. Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab 2014 ; 28 : 175–187. [CrossRef] [PubMed] [Google Scholar]
  18. Lanting CI, van Tijn DA, Loeber JG, et al. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics 2005 ; 116 : 168–173. [PubMed] [Google Scholar]
  19. Saleh DS, Lawrence S, Geraghty MT, et al. Prediction of congenital hypothyroidism based on initial screening thyroid-stimulating-hormone. BMC Pediatr 2016 ; 16 : 24. [CrossRef] [PubMed] [Google Scholar]
  20. Deladoey J, Ruel J, Giguere Y, Van Vliet G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J Clin Endocrinol Metab 2011 ; 96 : 2422–2429. [CrossRef] [PubMed] [Google Scholar]
  21. Albert BB, Cutfield WS, Webster D, et al. Etiology of increasing incidence of congenital hypothyroidism in New Zealand from 1993–2010. J Clin Endocrinol Metab 2012 ; 97 : 3155–3160. [CrossRef] [PubMed] [Google Scholar]
  22. Tillotson SL, Fuggle PW, Smith I, et al. Relation between biochemical severity and intelligence in early treated congenital hypothyroidism: a threshold effect. BMJ 1994 ; 309 : 440–445. [CrossRef] [PubMed] [Google Scholar]
  23. Grosse SD, Van Vliet G. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level?. Arch Dis Child 2011 ; 96 : 374–379. [CrossRef] [PubMed] [Google Scholar]
  24. Leger J, Ecosse E, Roussey M, et al. Subtle health impairment and socioeducational attainment in young adult patients with congenital hypothyroidism diagnosed by neonatal screening: a longitudinal population-based cohort study. J Clin Endocrinol Metab 2011 ; 96 : 1771–1782. [CrossRef] [PubMed] [Google Scholar]
  25. New England Congenital Hypothyroidism Collaborative Effects of neonatal screening for hypothyroidism: prevention of mental retardation by treatment before clinical manifestations. Lancet 1981 ; 2 : 1095–1098. [PubMed] [Google Scholar]
  26. Grosse SD. Does newborn screening save money? The difference between cost-effective and cost-saving interventions. J Pediatr 2005 ; 146 : 168–170. [CrossRef] [PubMed] [Google Scholar]
  27. Grosse SD, Baily MA, Murray TH. Cost effectiveness as a criterion for newborn screening policy decisions. Ethics and newborn genetic screening: new technologies, new challenges 2009 ; Baltimore, MD Johns Hopkins University Press 58–88. [Google Scholar]
  28. Smith P, Morris A. Assessment of a programme to screen the newborn for congenital hypothyroidism. Community Med 1979 ; 1 : 14–22. [PubMed] [Google Scholar]
  29. Boileau P, Bain P, Rives S, Toublanc JE. Earlier onset of treatment or increment in LT4 dose in screened congenital hypothyroidism: which as the more important factor for IQ at 7 years?. Horm Res 2004 ; 61 : 228–233. [PubMed] [Google Scholar]
  30. Donaldson M, Jones J. Optimising outcome in congenital hypothyroidism - Current opinions on best practice in initial assessment and subsequent management. J Clin Res Pediatr Endocrinol 2013 ; 5 : suppl 1 13–22. [CrossRef] [PubMed] [Google Scholar]
  31. Connelly KJ, LaFranchi SH. Detection of neonates with mild congenital hypothyroidism (primary) or isolated hyperthyrotropinemia: an increasingly common management dilemma. Expert Rev Endocrinol Metab 2014 ; 9 : 263–271. [CrossRef] [PubMed] [Google Scholar]
  32. Van Vliet G, Diaz Escagedo P. Redefining congenital hypothyroidism? J Clin Endocrinol Metab 2021; 106 : e1463–5. [CrossRef] [PubMed] [Google Scholar]
  33. Barry Y, Bonaldi C, Goulet V, et al. Increased incidence of congenital hypothyroidism in France from 1982 to 2012: a nationwide multicenter analysis. Ann Epidemiol 2016 ; 26 : 100–5 e4. [Google Scholar]
  34. Ford GA, Denniston S, Sesser D, et al. Transient versus permanent congenital hypothyroidism after the age of 3 years in infants detected on the first versus second newborn screening test in Oregon. USA. Horm Res Paediatr 2016 ; 86 : 169–177. [Google Scholar]
  35. Lain S, Trumpff C, Grosse SD, et al. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted?. Eur J Endocrinol 2017 ; 177 : D1–12. [CrossRef] [PubMed] [Google Scholar]
  36. Wolter R, Noel P, De Cock P, et al. Neuropsychological study in treated thyroid dysgenesis. Acta Paediatr Scand 1979 ; 277 : suppl 41–46. [Google Scholar]
  37. Lain SJ, Wiley V, Jack M, et al. Association of elevated neonatal thyroid-stimulating hormone levels with school performance and stimulant prescription for attention deficit hyperactivity disorder in childhood. Eur J Pediatr 2021; 180 : 1073–80. [CrossRef] [PubMed] [Google Scholar]
  38. Rovet JF. Congenital hypothyroidism: an analysis of persisting deficits and associated factors. Child Neuropsychol 2002 ; 8 : 150–162. [CrossRef] [PubMed] [Google Scholar]
  39. Hamdoun E, Karachunski P, Nathan B, et al. Case report: the specter of untreated congenital hypothyroidism in immigrant families. Pediatrics 2016 ; 137 : e20153418. [CrossRef] [PubMed] [Google Scholar]
  40. Alvarez OA, Hustace T, Voltaire M, et al. Newborn screening for sickle cell disease using point-of-care testing in low-income setting. Pediatrics 2019 ; 144 : e20184105. [CrossRef] [PubMed] [Google Scholar]
  41. McGann PT, Grosse SD, Santos B, et al. A cost-effectiveness analysis of a pilot neonatal screening program for sickle cell anemia in the Republic of Angola. J Pediatr 2015 ; 167 : 1314–1319. [CrossRef] [PubMed] [Google Scholar]
  42. Leger J, Olivieri A, Donaldson M, et al. European society for paediatric endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. Horm Res Paediatr 2014 ; 81 : 80–103. [Google Scholar]
  43. Pang S, Hotchkiss J, Drash AL, et al. Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1977 ; 45 : 1003–1008. [Google Scholar]
  44. Migeon CJ, Donohoue PA, Kappy MS, Blizzard RM, Migeon CJ. Adrenal disorders. The diagnosis and treatment of endocrine disorders in childhood and adolescence 1994 ; Springfield, Illinois, USA Charles C. Thomas 717–856. [Google Scholar]
  45. Perry R, Kecha O, Paquette J, et al. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine hospital. Montreal. J Clin Endocrinol Metab 2005 ; 90 : 3243–3250. [Google Scholar]
  46. Miranda MC, Haddad LBP, Madureira G, et al. Adverse outcomes and economic burden of congenital adrenal hyperplasia late diagnosis in the newborn screening absence. J Endocr Soc 2020; 4 : bvz013. [Google Scholar]
  47. Van Vliet G, Czernichow P. Screening for neonatal endocrinopathies: rationale, methods and results. Semin Neonatol 2004 ; 9 : 75–85. [Google Scholar]
  48. Coulm B, Coste J, Tardy V, et al. Efficiency of neonatal screening for congenital adrenal hyperplasia due to 21-hydroxylase deficiency in children born in mainland France between 1996 and 2003. Arch Pediatr Adolesc Med 2012 ; 166 : 113–120. [Google Scholar]
  49. Gau M, Konishi K, Takasawa K, et al. The progression of salt-wasting and the body weight change during the first 2 weeks of life in classical 21-hydroxylase deficiency patients. Clin Endocrinol (Oxf) 2021; 94 : 229–36. [Google Scholar]
  50. Hird BE, Tetlow L, Tobi S, et al. No evidence of an increase in early infant mortality from congenital adrenal hyperplasia in the absence of screening. Arch Dis Child 2014 ; 99 : 158–164. [Google Scholar]
  51. Carroll AE, Downs SM. Comprehensive cost-utility analysis of newborn screening strategies. Pediatrics 2006 ; 117 : S287–S295. [Google Scholar]
  52. Yoo BK, Grosse SD. The cost effectiveness of screening newborns for congenital adrenal hyperplasia. Public Health Genomics 2009 ; 12 : 67–72. [Google Scholar]
  53. Grosse SD, Van Vliet G. Challenges in assessing the cost-effectiveness of newborn screening: the example of congenital adrenal hyperplasia. Int J Neonatal Screen 2020; 6 : 82. [Google Scholar]
  54. Yoo BK, Grosse SD. Erratum. Public Health Genomics 2018 ; 21 : 100. [Google Scholar]
  55. Fox DA, Ronsley R, Khowaja AR, et al. Clinical impact and cost efficacy of newborn screening for congenital adrenal hyperplasia. J Pediatr 2020; 220 : 101–8.e2. [Google Scholar]
  56. Harasymiw LA, Grosse SD, Sarafoglou K. Attention-deficit/hyperactivity disorder among US children and adolescents with congenital adrenal hyperplasia. J Endocr Soc 2020; 4 : bvaa152. [Google Scholar]
  57. Speiser PW, Arlt W, Auchus RJ, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine society clinical practice guideline. J Clin Endocrinol Metab 2018 ; 103 : 4043–4088. [Google Scholar]
  58. Lasarev MR, Bialk ER, Allen DB, Held PK. Application of principal component analysis to newborn screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 2020; 105 : dgaa371. [Google Scholar]
  59. Speiser PW, Chawla R, Chen M, et al. Newborn screening protocols and positive predictive value for congenital adrenal hyperplasia vary across the United States. Int J Neonatal Screen 2020; 6 : 37. [Google Scholar]
  60. Lai F, Srinivasan S, Wiley V. Evaluation of a two-tier screening pathway for congenital adrenal hyperplasia in the New South Wales newborn screening programme. Int J Neonatal Screen 2020; 6 : 63. [Google Scholar]
  61. Grob F, Van Vliet G. Avoiding the overdiagnosis of congenital hypothyroidism in premature newborns. Pediatrics 2019 ; 144 : e20191706. [Google Scholar]
  62. Coste J, Carel JC, Autier P. The grey realities of population screening. Rev Epidemiol Sante Publ 2012 ; 60 : 163–165. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.