Accès gratuit
Numéro
Med Sci (Paris)
Volume 37, Numéro 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Page(s) 528 - 534
Section La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
DOI https://doi.org/10.1051/medsci/2021053
Publié en ligne 18 mai 2021
  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963 ; 32 : 338–343. [PubMed] [Google Scholar]
  2. Brosco JP, Paul DB. The political history of PKU: reflections on 50 years of newborn screening. Pediatrics 2013 ; 132 : 987–989. [CrossRef] [PubMed] [Google Scholar]
  3. Coutant R, Feillet F. Présentation de l’état des lieux du dépistage néonatal en France. Med Sci (Paris) 2018; 34 (hors série n° 1) : 19–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Cohen DJ, Reynolds MR. Interpreting the results of cost-effectiveness studies. J Am Coll Cardiol 2008 ; 52 : 2119–2126. [CrossRef] [PubMed] [Google Scholar]
  5. Pike J, Grosse SD. Friction cost estimates of productivity costs in cost-of-illness studies in comparison with human capital estimates: a review. Appl Health Econ Health Policy 2018 ; 16 : 765–778. [CrossRef] [PubMed] [Google Scholar]
  6. Grosse SD, Pike J, Soelaeman R, Tilford JM. Quantifying family spillover effects in economic evaluations: Measurement and valuation of informal care time. Pharmacoeconomics 2019 ; 37 : 461–473. [CrossRef] [PubMed] [Google Scholar]
  7. Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children’s exposure to lead in the United States. Environ Health Perspect 2002 ; 110 : 563–569. [CrossRef] [PubMed] [Google Scholar]
  8. Grosse SD, Van Vliet G. How many deaths can be prevented by newborn screening for congenital adrenal hyperplasia?. Horm Res 2007 ; 67 : 284–291. [PubMed] [Google Scholar]
  9. Cherella CE, Wassner AJ. Congenital hypothyroidism: insights into pathogenesis and treatment. Int J Pediatr Endocrinol 2017 ; 2017 : 11. [CrossRef] [PubMed] [Google Scholar]
  10. Braslavsky D, Méndez MV, Prieto L, et al. Pilot neonatal screening program for central congenital hypothyroidism: Evidence of significant detection. Horm Res Paediatr 2017 ; 88 : 274–280. [CrossRef] [PubMed] [Google Scholar]
  11. Naafs JC, Marchal JP, Fliers E, et al. Cognitive and motor outcome in patients with early-detected central congenital hypothyroidism compared with siblings. J Clin Endocrinol Metab 2021; 106 : e1231–9. [CrossRef] [PubMed] [Google Scholar]
  12. Alm J, Hagenfeldt L, Larsson A, Lundberg K. Incidence of congenital hypothyroidism: retrospective study of neonatal laboratory screening versus clinical symptoms as indicators leading to diagnosis. Br Med J 1984 ; 289 : 1171–1175. [Google Scholar]
  13. Pitts L, McCormick W, Mick GJ. Congenital hypothyroidism: 8-year experience using 2 newborn screens in Alabama. Horm Res Paediatr 2019 ; 91 : 319–328. [CrossRef] [PubMed] [Google Scholar]
  14. Kemper AR, Grosse SD, Baker M, et al. Treatment discontinuation within 3 years of levothyroxine initiation among children diagnosed with congenital hypothyroidism. J Pediatr 2020; 223 : 136–40. [CrossRef] [PubMed] [Google Scholar]
  15. Caiulo S, Corbetta C, Di Frenna M, et al. Newborn screening for congenital hypothyroidism: the benefit of using differential TSH cutoffs in a two-screen program. J Clin Endocrinol Metab 2021; 106 : e338–49. [CrossRef] [PubMed] [Google Scholar]
  16. Dussault JH. The anecdotal history of screening for congenital hypothyroidism. J Clin Endocrinol Metab 1999 ; 84 : 4332–4334. [CrossRef] [PubMed] [Google Scholar]
  17. Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab 2014 ; 28 : 175–187. [CrossRef] [PubMed] [Google Scholar]
  18. Lanting CI, van Tijn DA, Loeber JG, et al. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics 2005 ; 116 : 168–173. [PubMed] [Google Scholar]
  19. Saleh DS, Lawrence S, Geraghty MT, et al. Prediction of congenital hypothyroidism based on initial screening thyroid-stimulating-hormone. BMC Pediatr 2016 ; 16 : 24. [CrossRef] [PubMed] [Google Scholar]
  20. Deladoey J, Ruel J, Giguere Y, Van Vliet G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J Clin Endocrinol Metab 2011 ; 96 : 2422–2429. [CrossRef] [PubMed] [Google Scholar]
  21. Albert BB, Cutfield WS, Webster D, et al. Etiology of increasing incidence of congenital hypothyroidism in New Zealand from 1993–2010. J Clin Endocrinol Metab 2012 ; 97 : 3155–3160. [CrossRef] [PubMed] [Google Scholar]
  22. Tillotson SL, Fuggle PW, Smith I, et al. Relation between biochemical severity and intelligence in early treated congenital hypothyroidism: a threshold effect. BMJ 1994 ; 309 : 440–445. [CrossRef] [PubMed] [Google Scholar]
  23. Grosse SD, Van Vliet G. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level?. Arch Dis Child 2011 ; 96 : 374–379. [CrossRef] [PubMed] [Google Scholar]
  24. Leger J, Ecosse E, Roussey M, et al. Subtle health impairment and socioeducational attainment in young adult patients with congenital hypothyroidism diagnosed by neonatal screening: a longitudinal population-based cohort study. J Clin Endocrinol Metab 2011 ; 96 : 1771–1782. [CrossRef] [PubMed] [Google Scholar]
  25. New England Congenital Hypothyroidism Collaborative Effects of neonatal screening for hypothyroidism: prevention of mental retardation by treatment before clinical manifestations. Lancet 1981 ; 2 : 1095–1098. [PubMed] [Google Scholar]
  26. Grosse SD. Does newborn screening save money? The difference between cost-effective and cost-saving interventions. J Pediatr 2005 ; 146 : 168–170. [CrossRef] [PubMed] [Google Scholar]
  27. Grosse SD, Baily MA, Murray TH. Cost effectiveness as a criterion for newborn screening policy decisions. Ethics and newborn genetic screening: new technologies, new challenges 2009 ; Baltimore, MD Johns Hopkins University Press 58–88. [Google Scholar]
  28. Smith P, Morris A. Assessment of a programme to screen the newborn for congenital hypothyroidism. Community Med 1979 ; 1 : 14–22. [PubMed] [Google Scholar]
  29. Boileau P, Bain P, Rives S, Toublanc JE. Earlier onset of treatment or increment in LT4 dose in screened congenital hypothyroidism: which as the more important factor for IQ at 7 years?. Horm Res 2004 ; 61 : 228–233. [PubMed] [Google Scholar]
  30. Donaldson M, Jones J. Optimising outcome in congenital hypothyroidism - Current opinions on best practice in initial assessment and subsequent management. J Clin Res Pediatr Endocrinol 2013 ; 5 : suppl 1 13–22. [CrossRef] [PubMed] [Google Scholar]
  31. Connelly KJ, LaFranchi SH. Detection of neonates with mild congenital hypothyroidism (primary) or isolated hyperthyrotropinemia: an increasingly common management dilemma. Expert Rev Endocrinol Metab 2014 ; 9 : 263–271. [CrossRef] [PubMed] [Google Scholar]
  32. Van Vliet G, Diaz Escagedo P. Redefining congenital hypothyroidism? J Clin Endocrinol Metab 2021; 106 : e1463–5. [CrossRef] [PubMed] [Google Scholar]
  33. Barry Y, Bonaldi C, Goulet V, et al. Increased incidence of congenital hypothyroidism in France from 1982 to 2012: a nationwide multicenter analysis. Ann Epidemiol 2016 ; 26 : 100–5 e4. [Google Scholar]
  34. Ford GA, Denniston S, Sesser D, et al. Transient versus permanent congenital hypothyroidism after the age of 3 years in infants detected on the first versus second newborn screening test in Oregon. USA. Horm Res Paediatr 2016 ; 86 : 169–177. [Google Scholar]
  35. Lain S, Trumpff C, Grosse SD, et al. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted?. Eur J Endocrinol 2017 ; 177 : D1–12. [CrossRef] [PubMed] [Google Scholar]
  36. Wolter R, Noel P, De Cock P, et al. Neuropsychological study in treated thyroid dysgenesis. Acta Paediatr Scand 1979 ; 277 : suppl 41–46. [Google Scholar]
  37. Lain SJ, Wiley V, Jack M, et al. Association of elevated neonatal thyroid-stimulating hormone levels with school performance and stimulant prescription for attention deficit hyperactivity disorder in childhood. Eur J Pediatr 2021; 180 : 1073–80. [CrossRef] [PubMed] [Google Scholar]
  38. Rovet JF. Congenital hypothyroidism: an analysis of persisting deficits and associated factors. Child Neuropsychol 2002 ; 8 : 150–162. [CrossRef] [PubMed] [Google Scholar]
  39. Hamdoun E, Karachunski P, Nathan B, et al. Case report: the specter of untreated congenital hypothyroidism in immigrant families. Pediatrics 2016 ; 137 : e20153418. [CrossRef] [PubMed] [Google Scholar]
  40. Alvarez OA, Hustace T, Voltaire M, et al. Newborn screening for sickle cell disease using point-of-care testing in low-income setting. Pediatrics 2019 ; 144 : e20184105. [CrossRef] [PubMed] [Google Scholar]
  41. McGann PT, Grosse SD, Santos B, et al. A cost-effectiveness analysis of a pilot neonatal screening program for sickle cell anemia in the Republic of Angola. J Pediatr 2015 ; 167 : 1314–1319. [CrossRef] [PubMed] [Google Scholar]
  42. Leger J, Olivieri A, Donaldson M, et al. European society for paediatric endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. Horm Res Paediatr 2014 ; 81 : 80–103. [Google Scholar]
  43. Pang S, Hotchkiss J, Drash AL, et al. Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1977 ; 45 : 1003–1008. [Google Scholar]
  44. Migeon CJ, Donohoue PA, Kappy MS, Blizzard RM, Migeon CJ. Adrenal disorders. The diagnosis and treatment of endocrine disorders in childhood and adolescence 1994 ; Springfield, Illinois, USA Charles C. Thomas 717–856. [Google Scholar]
  45. Perry R, Kecha O, Paquette J, et al. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine hospital. Montreal. J Clin Endocrinol Metab 2005 ; 90 : 3243–3250. [Google Scholar]
  46. Miranda MC, Haddad LBP, Madureira G, et al. Adverse outcomes and economic burden of congenital adrenal hyperplasia late diagnosis in the newborn screening absence. J Endocr Soc 2020; 4 : bvz013. [Google Scholar]
  47. Van Vliet G, Czernichow P. Screening for neonatal endocrinopathies: rationale, methods and results. Semin Neonatol 2004 ; 9 : 75–85. [Google Scholar]
  48. Coulm B, Coste J, Tardy V, et al. Efficiency of neonatal screening for congenital adrenal hyperplasia due to 21-hydroxylase deficiency in children born in mainland France between 1996 and 2003. Arch Pediatr Adolesc Med 2012 ; 166 : 113–120. [Google Scholar]
  49. Gau M, Konishi K, Takasawa K, et al. The progression of salt-wasting and the body weight change during the first 2 weeks of life in classical 21-hydroxylase deficiency patients. Clin Endocrinol (Oxf) 2021; 94 : 229–36. [Google Scholar]
  50. Hird BE, Tetlow L, Tobi S, et al. No evidence of an increase in early infant mortality from congenital adrenal hyperplasia in the absence of screening. Arch Dis Child 2014 ; 99 : 158–164. [Google Scholar]
  51. Carroll AE, Downs SM. Comprehensive cost-utility analysis of newborn screening strategies. Pediatrics 2006 ; 117 : S287–S295. [Google Scholar]
  52. Yoo BK, Grosse SD. The cost effectiveness of screening newborns for congenital adrenal hyperplasia. Public Health Genomics 2009 ; 12 : 67–72. [Google Scholar]
  53. Grosse SD, Van Vliet G. Challenges in assessing the cost-effectiveness of newborn screening: the example of congenital adrenal hyperplasia. Int J Neonatal Screen 2020; 6 : 82. [Google Scholar]
  54. Yoo BK, Grosse SD. Erratum. Public Health Genomics 2018 ; 21 : 100. [Google Scholar]
  55. Fox DA, Ronsley R, Khowaja AR, et al. Clinical impact and cost efficacy of newborn screening for congenital adrenal hyperplasia. J Pediatr 2020; 220 : 101–8.e2. [Google Scholar]
  56. Harasymiw LA, Grosse SD, Sarafoglou K. Attention-deficit/hyperactivity disorder among US children and adolescents with congenital adrenal hyperplasia. J Endocr Soc 2020; 4 : bvaa152. [Google Scholar]
  57. Speiser PW, Arlt W, Auchus RJ, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine society clinical practice guideline. J Clin Endocrinol Metab 2018 ; 103 : 4043–4088. [Google Scholar]
  58. Lasarev MR, Bialk ER, Allen DB, Held PK. Application of principal component analysis to newborn screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 2020; 105 : dgaa371. [Google Scholar]
  59. Speiser PW, Chawla R, Chen M, et al. Newborn screening protocols and positive predictive value for congenital adrenal hyperplasia vary across the United States. Int J Neonatal Screen 2020; 6 : 37. [Google Scholar]
  60. Lai F, Srinivasan S, Wiley V. Evaluation of a two-tier screening pathway for congenital adrenal hyperplasia in the New South Wales newborn screening programme. Int J Neonatal Screen 2020; 6 : 63. [Google Scholar]
  61. Grob F, Van Vliet G. Avoiding the overdiagnosis of congenital hypothyroidism in premature newborns. Pediatrics 2019 ; 144 : e20191706. [Google Scholar]
  62. Coste J, Carel JC, Autier P. The grey realities of population screening. Rev Epidemiol Sante Publ 2012 ; 60 : 163–165. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.