Free Access
Issue |
Med Sci (Paris)
Volume 37, Number 3, Mars 2021
|
|
---|---|---|
Page(s) | 258 - 264 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021011 | |
Published online | 19 March 2021 |
- Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019 ; 571 : 489–499. [PubMed] [Google Scholar]
- Leung C, Breton S, Angers B. Facing environmental predictability with different sources of epigenetic variation. Ecol Evol 2016 ; 6 : 5234–5245. [Google Scholar]
- Illingworth RS, Bird AP. CpG islands: a rough guide. FEBS Lett 2009 ; 583 : 1713–1720. [PubMed] [Google Scholar]
- Weber M.. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–734. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Scheffler IE. Mitochondria 2008 ; New Jersey: Wiley-Liss, 492 p [Google Scholar]
- Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017 ; 27 : R1177–R1192. [PubMed] [Google Scholar]
- Andersson S, Zomorodipour A, Andersson J, et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998 ; 396 : 133–140. [PubMed] [Google Scholar]
- Boore JL. Animal mitochondrial genomes. Nucleic Acids Res 1999 ; 27 : 1767–1780. [PubMed] [Google Scholar]
- Angers A, Ouimet P, Tsyvian-Dzyabko A, et al. L’ADN mitochondrial, un potentiel codant mésestimé. Med Sci (Paris) 2019 ; 35 : 46–54. [Google Scholar]
- Breton S, Doucet-Beaupré H. Un système de transmission de l’ADN mitochondrial sexuellement équitable. Med Sci (Paris) 2007 ; 23 : 1038–1040. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Casadesús J. Bacterial DNA Methylation and methylomes. In: Jeltsch A, Jurkowska R, eds. DNA methyltransferases-Role and function. Switzerland: Springer, 2016: 35–61. [Google Scholar]
- Gonzalez D, Kozdon JB, McAdams HH, et al. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014 ; 42 : 3720–3735. [PubMed] [Google Scholar]
- Robertson GT, Reisenauer A, Wright R, et al. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol 2000 ; 182 : 3482–3489. [PubMed] [Google Scholar]
- Colot V, Rossignol JL. Eukaryotic DNA methylation as an evolutionary device. Bioessays 1999 ; 21 : 402–411. [PubMed] [Google Scholar]
- Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 1993 ; 90 : 11995–11999. [Google Scholar]
- Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006 ; 103 : 1412–1417. [Google Scholar]
- Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007 ; 39 : 457–466. [Google Scholar]
- Mposhi A, Van der Wijst MG, Faber KN, et al. Regulation of mitochondrial gene expression, the epigenetic enigma. Front Biosci 2017 ; 22 : 1099–1113. [Google Scholar]
- Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Genet 2015 ; 16 : 530–542. [Google Scholar]
- Bellizzi D, D’Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013 ; 20 : 537–547. [PubMed] [Google Scholar]
- Liu B, Du Q, Chen L, et al. CpG methylation patterns of human mitochondrial DNA. Sci Rep 2016 ; 6 : 1–10. [Google Scholar]
- Bianchessi V, Vinci MC, Nigro P, et al. Methylation profiling by bisulfite sequencing analysis of the mtDNA non-coding region in replicative and senescent endothelial cells. Mitochondrion 2016 ; 27 : 40–47. [PubMed] [Google Scholar]
- D’Aquila P, Montesanto A, Guarasci F, et al. Mitochondrial genome and epigenome: two sides of the same coin. Front Biosci 2017 ; 22 : 888–908. [Google Scholar]
- Coppedè F, Stoccoro A. Mitoepigenetics and neurodegenerative diseases. Front Endocrinol 2019 ; 10 : 1–7. [Google Scholar]
- Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: epigenetics and environment. Environ Mol Mutagen 2019 ; 60 : 668–682. [PubMed] [Google Scholar]
- Vanyushin BF, Kiryanov GI, Kudryashova IB, et al. DNA-methylase in loach embryos (Misgurnus fossilis). FEBS Lett 1971 ; 15 : 313–316. [PubMed] [Google Scholar]
- Nass MM. Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells in vivo and in vitro methylation. J Mol Biol 1973 ; 80 : 155–175. [Google Scholar]
- Vanyushin BF, Kirnos MD. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett 1974 ; 39 : 195–199. [PubMed] [Google Scholar]
- Dawid IB. 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 1974 ; 184 : 80–81. [Google Scholar]
- Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 1974 ; 374 : 1–11. [PubMed] [Google Scholar]
- Groot GS, Kroon AM. Mitochondrial DNA from various organisms does not contain internally methylated cytosine in CCGG sequences. Biochim Biophys Acta 1979 ; 564 : 355–357. [PubMed] [Google Scholar]
- Shmookler Reis RJ. Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 1983 ; 258 : 9078–9085. [PubMed] [Google Scholar]
- Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011 ; 108 : 3630–3635. [Google Scholar]
- Dou X, Boyd-Kirkup JD, McDermott J, et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res 2019 ; 29 : 1622–1634. [PubMed] [Google Scholar]
- Patil V, Cuenin C, Chung F, et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 2019 ; 47 : 10072–10085. [PubMed] [Google Scholar]
- Mechta M, Ingerslev LR, Fabre O, et al. Evidence suggesting absence of mitochondrial DNA methylation. Front Genet 2017 ; 8 : 1–9. [PubMed] [Google Scholar]
- Owa C, Poulin M, Yan L, et al. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: sources and avoidance of false-positive detection. PLoS One 2018 ; 13 : 1–19. [CrossRef] [PubMed] [Google Scholar]
- Matsuda S, Yasukawa T, Sakaguchi Y, et al. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci Rep 2018 ; 8 : 1–13. [Google Scholar]
- Dayama G, Emery SB, Kidd JM, Mills RE. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res 2014 ; 42 : 12640–12649. [PubMed] [Google Scholar]
- De Vries R.. DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins. Biochimie 2010 ; 92 : 1715–1721. [PubMed] [Google Scholar]
- Sirard MA. Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Sci Rep 2019 ; 9 : 11937. [PubMed] [Google Scholar]
- Lambertini L, Byun HM. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep 2016 ; 3 : 214–224. [PubMed] [Google Scholar]
- Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013 ; 10 : 1–8. [PubMed] [Google Scholar]
- Armstrong DA, Green BB, Blair BA, et al. Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. Environ Epigenet 2016 ; 2 : 1–9. [Google Scholar]
- Jia Y, Song H, Gao G, et al. Maternal betaine supplementation during gestation enhances expression of mtdna-encoded genes through d-loop DNA hypomethylation in the skeletal muscle of newborn piglets. J Agric Food Chem 2015 ; 63 : 10152–10160. [PubMed] [Google Scholar]
- van der Wijst MG, van Tilburg AY, Ruiters MH, et al. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep 2017 ; 7 : 1–15. [CrossRef] [PubMed] [Google Scholar]
- Koh CWQ, Goh YT, Toh JDW, et al. Single-nucleotide-resolution sequencing of human N6-methyldeoxyadenosine reveals strand-asymmetric clusters associated with SSBP1 on the mitochondrial genome. Nucleic Acids Res 2018 ; 46 : 11659–11670. [PubMed] [Google Scholar]
- Hao Z, Wu T, Cui X, et al. N6-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 2020; 78 : 382–95.e1-8. [PubMed] [Google Scholar]
- Bartelli TF, Bruno DCF, Briones MRS. Evidence for mitochondrial genome methylation in the yeast Candida albicans: a potential novel epigenetic mechanism affecting adaptation and pathogenicity?. Front Genet 2018 ; 9 : 1–7. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.