Free Access
Med Sci (Paris)
Volume 37, Number 3, Mars 2021
Page(s) 249 - 257
Section M/S Revues
Published online 19 March 2021
  1. Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 2020; 323 : 844–53. [PubMed] [Google Scholar]
  2. Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev Drug Discov 2011 ; 10 : 507–519. [Google Scholar]
  3. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov 2014 ; 13 : 577–587. [Google Scholar]
  4. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery - past, present and future. Nat Rev Drug Discov 2014 ; 13 : 588–602. [Google Scholar]
  5. Dorval T, Chanrion B, Cattin ME, Stephan JP. Filling the drug discovery gap: is high-content screening the missing link?. Curr Opin Pharmacol 2018 ; 42 : 40–45. [PubMed] [Google Scholar]
  6. Prudent R, Soleilhac E, Barette C, et al. Les criblages phénotypiques ou comment faire d’une pierre deux coups - Découvrir la cible et la molécule pharmacologique capable de la réguler. Med Sci (Paris) 2013 ; 29 : 897–905. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Brodin P, DelNery E, Soleilhac E. Criblage phénotypique à haut contenu pour la chémobiologie et ses enjeux. Med Sci (Paris) 2015 ; 31 : 187–196. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Xu JJ, Henstock PV, Dunn MC, et al. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 2008 ; 105 : 97–105. [PubMed] [Google Scholar]
  9. Gough AH, Chen N, Shun TY, et al. Identifying and quantifying heterogeneity in high content analysis : application of heterogeneity indices to drug discovery (Paulmurugan R ed). PLoS One 2014 ; 9 : e102678. [Google Scholar]
  10. O’Brien PJ, Irwin W, Diaz D, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 2006 ; 80 : 580–604. [PubMed] [Google Scholar]
  11. Simm J, Klambauer G, Arany A, et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem Biol 2018 ; 25 : 611–8 e3. [Google Scholar]
  12. Hofmarcher M, Rumetshofer E, Clevert DA, et al. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J Chem Inf Model 2019 ; 59 : 1163–1171. [PubMed] [Google Scholar]
  13. Guidance for Industry. Content and format of investigational new drug applications (inds) for phase 1 studies of drugs, including well-characterized, therapeutic, biotechnology-derived products. Center for Drug Evaluation and Research-Center for Biologics Evaluation and Research, 1995. [Google Scholar]
  14. Young PR. Perspective on the discovery and scientific impact of p38 MAP-kinase. J Biomol Screen 2013 ; 18 : 1156–1163. [PubMed] [Google Scholar]
  15. Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today 2013 ; 18 : 1067–1073. [CrossRef] [PubMed] [Google Scholar]
  16. Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013 ; 494 : 256–260. [CrossRef] [PubMed] [Google Scholar]
  17. Lee JA, Berg EL. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J Biomol Screen 2013 ; 18 : 1143–1155. [PubMed] [Google Scholar]
  18. Bach S, Knockaert M, Reinhardt J, et al. Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 2005 ; 280 : 31208–31219. [CrossRef] [PubMed] [Google Scholar]
  19. Sche PP, McKenzie KM, White JD, Austin DJ. Display cloning: functional identification of natural product receptors using cDNA-phage display. Chem Biol 1999 ; 6 : 707–716. [PubMed] [Google Scholar]
  20. Shim JS, Lee J, Park HJ, et al. A new curcumin derivative, hbc, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem Biol 2004 ; 11 : 1455–1463. [PubMed] [Google Scholar]
  21. Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci USA 1996 ; 93 : 12817–12811. [Google Scholar]
  22. Becker F, Murthi K, Smith C, et al. A Three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 2004 ; 11 : 211–223. [PubMed] [Google Scholar]
  23. Chidley C, Haruki H, Pedersen MG, et al. A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis. Nat Chem Biol 2011 ; 7 : 375–383. [Google Scholar]
  24. McPherson M, Yang Y, Hammond PW, Kreider BL. Drug receptor identification from multiple tissues using cellular-derived mrna display libraries. Chem Biol 2002 ; 9 : 691–698. [PubMed] [Google Scholar]
  25. Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 2004 ; 101 : 16594–16599. [Google Scholar]
  26. Mullican SE, Lin-Schmidt X, Chin CN, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 2017 ; 23 : 1150–1157. [PubMed] [Google Scholar]
  27. Peterson JR, Lebensohn AM, Pelish HE, Kirschner MW. Biochemical suppression of small-molecule inhibitors: a strategy to identify inhibitor targets and signaling pathway components. Chem Biol 2006 ; 13 : 443–452. [CrossRef] [PubMed] [Google Scholar]
  28. Wang L, Eftekhari P, Schachner D, et al. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Sci Rep 2018 ; 8 : 1–10. [Google Scholar]
  29. Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA 2009 ; 106 : 21984–21989. [CrossRef] [Google Scholar]
  30. Nijman SMB. Functional genomics to uncover drug mechanism of action. Nat Chem Biol 2015 ; 11 : 942–948. [Google Scholar]
  31. Neggers JE, Kwanten B, Dierckx T, et al. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat Commun 2018 ; 9 : 1–14. [Google Scholar]
  32. Kufareva I, Chen YC, Ilatovskiy AV, et al. Compound activity prediction using models of binding pockets or ligand properties in 3D. Curr Top Med Chem 2012 ; 12 : 1869–1882. [PubMed] [Google Scholar]
  33. Tsubaki M, Tomii K, Sese J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 2019 ; 35 : 309–318. [PubMed] [Google Scholar]
  34. Perlman Z, Slack MD, Feng Y. Multidimensional drug profiling by automated microscopy. Science 2004 ; 30 : 1194–1198. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.