Accès gratuit
Numéro |
Med Sci (Paris)
Volume 37, Numéro 3, Mars 2021
|
|
---|---|---|
Page(s) | 258 - 264 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021011 | |
Publié en ligne | 19 mars 2021 |
- Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 2019 ; 571 : 489–499. [PubMed] [Google Scholar]
- Leung C, Breton S, Angers B. Facing environmental predictability with different sources of epigenetic variation. Ecol Evol 2016 ; 6 : 5234–5245. [Google Scholar]
- Illingworth RS, Bird AP. CpG islands: a rough guide. FEBS Lett 2009 ; 583 : 1713–1720. [PubMed] [Google Scholar]
- Weber M.. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008 ; 24 : 731–734. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Scheffler IE. Mitochondria 2008 ; New Jersey: Wiley-Liss, 492 p [Google Scholar]
- Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017 ; 27 : R1177–R1192. [PubMed] [Google Scholar]
- Andersson S, Zomorodipour A, Andersson J, et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998 ; 396 : 133–140. [PubMed] [Google Scholar]
- Boore JL. Animal mitochondrial genomes. Nucleic Acids Res 1999 ; 27 : 1767–1780. [PubMed] [Google Scholar]
- Angers A, Ouimet P, Tsyvian-Dzyabko A, et al. L’ADN mitochondrial, un potentiel codant mésestimé. Med Sci (Paris) 2019 ; 35 : 46–54. [Google Scholar]
- Breton S, Doucet-Beaupré H. Un système de transmission de l’ADN mitochondrial sexuellement équitable. Med Sci (Paris) 2007 ; 23 : 1038–1040. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Casadesús J. Bacterial DNA Methylation and methylomes. In: Jeltsch A, Jurkowska R, eds. DNA methyltransferases-Role and function. Switzerland: Springer, 2016: 35–61. [Google Scholar]
- Gonzalez D, Kozdon JB, McAdams HH, et al. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014 ; 42 : 3720–3735. [PubMed] [Google Scholar]
- Robertson GT, Reisenauer A, Wright R, et al. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol 2000 ; 182 : 3482–3489. [PubMed] [Google Scholar]
- Colot V, Rossignol JL. Eukaryotic DNA methylation as an evolutionary device. Bioessays 1999 ; 21 : 402–411. [PubMed] [Google Scholar]
- Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 1993 ; 90 : 11995–11999. [Google Scholar]
- Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006 ; 103 : 1412–1417. [Google Scholar]
- Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007 ; 39 : 457–466. [Google Scholar]
- Mposhi A, Van der Wijst MG, Faber KN, et al. Regulation of mitochondrial gene expression, the epigenetic enigma. Front Biosci 2017 ; 22 : 1099–1113. [Google Scholar]
- Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Genet 2015 ; 16 : 530–542. [Google Scholar]
- Bellizzi D, D’Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013 ; 20 : 537–547. [PubMed] [Google Scholar]
- Liu B, Du Q, Chen L, et al. CpG methylation patterns of human mitochondrial DNA. Sci Rep 2016 ; 6 : 1–10. [Google Scholar]
- Bianchessi V, Vinci MC, Nigro P, et al. Methylation profiling by bisulfite sequencing analysis of the mtDNA non-coding region in replicative and senescent endothelial cells. Mitochondrion 2016 ; 27 : 40–47. [PubMed] [Google Scholar]
- D’Aquila P, Montesanto A, Guarasci F, et al. Mitochondrial genome and epigenome: two sides of the same coin. Front Biosci 2017 ; 22 : 888–908. [Google Scholar]
- Coppedè F, Stoccoro A. Mitoepigenetics and neurodegenerative diseases. Front Endocrinol 2019 ; 10 : 1–7. [Google Scholar]
- Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: epigenetics and environment. Environ Mol Mutagen 2019 ; 60 : 668–682. [PubMed] [Google Scholar]
- Vanyushin BF, Kiryanov GI, Kudryashova IB, et al. DNA-methylase in loach embryos (Misgurnus fossilis). FEBS Lett 1971 ; 15 : 313–316. [PubMed] [Google Scholar]
- Nass MM. Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells in vivo and in vitro methylation. J Mol Biol 1973 ; 80 : 155–175. [Google Scholar]
- Vanyushin BF, Kirnos MD. The nucleotide composition and pyrimidine clusters in DNA from beef heart mitochondria. FEBS Lett 1974 ; 39 : 195–199. [PubMed] [Google Scholar]
- Dawid IB. 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 1974 ; 184 : 80–81. [Google Scholar]
- Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta 1974 ; 374 : 1–11. [PubMed] [Google Scholar]
- Groot GS, Kroon AM. Mitochondrial DNA from various organisms does not contain internally methylated cytosine in CCGG sequences. Biochim Biophys Acta 1979 ; 564 : 355–357. [PubMed] [Google Scholar]
- Shmookler Reis RJ. Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 1983 ; 258 : 9078–9085. [PubMed] [Google Scholar]
- Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011 ; 108 : 3630–3635. [Google Scholar]
- Dou X, Boyd-Kirkup JD, McDermott J, et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res 2019 ; 29 : 1622–1634. [PubMed] [Google Scholar]
- Patil V, Cuenin C, Chung F, et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 2019 ; 47 : 10072–10085. [PubMed] [Google Scholar]
- Mechta M, Ingerslev LR, Fabre O, et al. Evidence suggesting absence of mitochondrial DNA methylation. Front Genet 2017 ; 8 : 1–9. [PubMed] [Google Scholar]
- Owa C, Poulin M, Yan L, et al. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: sources and avoidance of false-positive detection. PLoS One 2018 ; 13 : 1–19. [CrossRef] [PubMed] [Google Scholar]
- Matsuda S, Yasukawa T, Sakaguchi Y, et al. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci Rep 2018 ; 8 : 1–13. [Google Scholar]
- Dayama G, Emery SB, Kidd JM, Mills RE. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res 2014 ; 42 : 12640–12649. [PubMed] [Google Scholar]
- De Vries R.. DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins. Biochimie 2010 ; 92 : 1715–1721. [PubMed] [Google Scholar]
- Sirard MA. Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Sci Rep 2019 ; 9 : 11937. [PubMed] [Google Scholar]
- Lambertini L, Byun HM. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep 2016 ; 3 : 214–224. [PubMed] [Google Scholar]
- Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013 ; 10 : 1–8. [PubMed] [Google Scholar]
- Armstrong DA, Green BB, Blair BA, et al. Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. Environ Epigenet 2016 ; 2 : 1–9. [Google Scholar]
- Jia Y, Song H, Gao G, et al. Maternal betaine supplementation during gestation enhances expression of mtdna-encoded genes through d-loop DNA hypomethylation in the skeletal muscle of newborn piglets. J Agric Food Chem 2015 ; 63 : 10152–10160. [PubMed] [Google Scholar]
- van der Wijst MG, van Tilburg AY, Ruiters MH, et al. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep 2017 ; 7 : 1–15. [CrossRef] [PubMed] [Google Scholar]
- Koh CWQ, Goh YT, Toh JDW, et al. Single-nucleotide-resolution sequencing of human N6-methyldeoxyadenosine reveals strand-asymmetric clusters associated with SSBP1 on the mitochondrial genome. Nucleic Acids Res 2018 ; 46 : 11659–11670. [PubMed] [Google Scholar]
- Hao Z, Wu T, Cui X, et al. N6-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 2020; 78 : 382–95.e1-8. [PubMed] [Google Scholar]
- Bartelli TF, Bruno DCF, Briones MRS. Evidence for mitochondrial genome methylation in the yeast Candida albicans: a potential novel epigenetic mechanism affecting adaptation and pathogenicity?. Front Genet 2018 ; 9 : 1–7. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.