Free Access
Med Sci (Paris)
Volume 36, Octobre 2020
Les jeunes contre le cancer : la Ligue en soutien
Page(s) 33 - 37
Published online 14 October 2020
  1. Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents : diagnosis, treatment, and prevention. NeuroOncol 2012 ; 45–54. [Google Scholar]
  2. Harrach S, Ciarimboli G. Role of transporters in the distribution of platinum-based drugs. Front Pharmacol 2015 ; 6 : 17. [CrossRef] [PubMed] [Google Scholar]
  3. Calls A, Carozzi V, Navarro X, et al. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp Neurol 2020; 325 : 113141. [CrossRef] [PubMed] [Google Scholar]
  4. Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014 ; 155 : 2461–2470. [CrossRef] [PubMed] [Google Scholar]
  5. Colvin LA. Chemotherapy-induced peripheral neuropathy: where are we now?. Pain 2019 ; 160 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  6. Screnci D, McKeage MJ, Galettis P, et al. Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 2000 ; 82 : 966–972. [CrossRef] [PubMed] [Google Scholar]
  7. Sprowl JA, Ciarimboli G, Lancaster CS, et al. Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci USA 2013 ; 110 : 11199–11204. [CrossRef] [Google Scholar]
  8. Chukyo A, Chiba T, Kambe T, et al. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides 2018 ; 67 : 95–101. [CrossRef] [PubMed] [Google Scholar]
  9. Areti A, Yerra VG, Naidu VGM, et al. Redox biology oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2014 ; 2 : 289–295. [CrossRef] [PubMed] [Google Scholar]
  10. Palladino SP, Helton ES, Jain P, et al. The human blood-nerve barrier transcriptome. Sci Rep 2017 ; 7 : 17477. [CrossRef] [PubMed] [Google Scholar]
  11. Richner M, Ferreira N, Dudele A, et al. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci 2019 ; 13 : 1–9. [PubMed] [Google Scholar]
  12. Maiuolo J, Gliozzi M, Musolino V, et al. The role of endothelial dysfunction in peripheral blood nerve barrier: molecular mechanisms and pathophysiological implications. Int J Mol Sci 2019 ; 20 : 3022. [Google Scholar]
  13. Smith EML, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 2014 ; 309 : 1359–1367. [Google Scholar]
  14. Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol 2020; 145 : 102831. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.