Accès gratuit
Numéro
Med Sci (Paris)
Volume 36, Octobre 2020
Les jeunes contre le cancer : la Ligue en soutien
Page(s) 33 - 37
DOI https://doi.org/10.1051/medsci/2020191
Publié en ligne 14 octobre 2020
  1. Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents : diagnosis, treatment, and prevention. NeuroOncol 2012 ; 45–54. [Google Scholar]
  2. Harrach S, Ciarimboli G. Role of transporters in the distribution of platinum-based drugs. Front Pharmacol 2015 ; 6 : 17. [CrossRef] [PubMed] [Google Scholar]
  3. Calls A, Carozzi V, Navarro X, et al. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp Neurol 2020; 325 : 113141. [CrossRef] [PubMed] [Google Scholar]
  4. Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014 ; 155 : 2461–2470. [CrossRef] [PubMed] [Google Scholar]
  5. Colvin LA. Chemotherapy-induced peripheral neuropathy: where are we now?. Pain 2019 ; 160 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  6. Screnci D, McKeage MJ, Galettis P, et al. Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 2000 ; 82 : 966–972. [CrossRef] [PubMed] [Google Scholar]
  7. Sprowl JA, Ciarimboli G, Lancaster CS, et al. Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci USA 2013 ; 110 : 11199–11204. [CrossRef] [Google Scholar]
  8. Chukyo A, Chiba T, Kambe T, et al. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides 2018 ; 67 : 95–101. [CrossRef] [PubMed] [Google Scholar]
  9. Areti A, Yerra VG, Naidu VGM, et al. Redox biology oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2014 ; 2 : 289–295. [CrossRef] [PubMed] [Google Scholar]
  10. Palladino SP, Helton ES, Jain P, et al. The human blood-nerve barrier transcriptome. Sci Rep 2017 ; 7 : 17477. [CrossRef] [PubMed] [Google Scholar]
  11. Richner M, Ferreira N, Dudele A, et al. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci 2019 ; 13 : 1–9. [PubMed] [Google Scholar]
  12. Maiuolo J, Gliozzi M, Musolino V, et al. The role of endothelial dysfunction in peripheral blood nerve barrier: molecular mechanisms and pathophysiological implications. Int J Mol Sci 2019 ; 20 : 3022. [Google Scholar]
  13. Smith EML, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 2014 ; 309 : 1359–1367. [Google Scholar]
  14. Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol 2020; 145 : 102831. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.