m/s / COVID-19
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
m/s / COVID-19
Page(s) 908 - 913
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020168
Published online 22 September 2020
  1. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease a model-based analysis. Lancet Infect Dis 2019 ; 2020(20): 669–677. [Google Scholar]
  2. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 : 1054–62. [CrossRef] [PubMed] [Google Scholar]
  3. Levy MM, Fink MP, Marshall JC, et al. International sepsis definitions conference. Crit Care Med 2003 ; 31 : 1250–1256. [CrossRef] [PubMed] [Google Scholar]
  4. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 2019 ; 2020 ; 9 : 231. [Google Scholar]
  5. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020 : eabc6027. [Google Scholar]
  6. Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 2020; 81 : e6–e12. [Google Scholar]
  7. Song CY, Xu J, He JQ, Lu YQ. COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients. Infect Dis (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.03.05.20031906. [Google Scholar]
  8. Sanchez-Cerrillo I, Landete P, Aldave B, et al. Differential redistribution of activated monocyte and dendritic cell subsets to the lung associates with severity of COVID-19. Infect Dis (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.05.13.20100925. [Google Scholar]
  9. Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov 2020; 6. [PubMed] [Google Scholar]
  10. Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020; 27: 1451–4. https://doi.org/10.1038/s41418-020-0530-3. [CrossRef] [PubMed] [Google Scholar]
  11. Gonçalves E, Bonduelle O, Soria A, et al. Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. J Clin Invest 2019 ; 129 : 1960–1971. [CrossRef] [PubMed] [Google Scholar]
  12. Gonçalves E, Combadière B. Prédire la réponse à la vaccination contre la grippe : vers l’identification d’une signature moléculaire précoce. Med Sci (Paris) 2020; 36 : 31–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Du SQ, Yuan W. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J Med Virol 2020; 10.1002/jmv.25866. [Google Scholar]
  14. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26 : 845–8. [CrossRef] [PubMed] [Google Scholar]
  15. Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020; 26 : 1033–6. [CrossRef] [PubMed] [Google Scholar]
  16. Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 2020; 52 : 971–7. [CrossRef] [PubMed] [Google Scholar]
  17. Du Z, Zhu F, Guo F, et al. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J Med Virol 2020; 10.1002/jmv.25820. [Google Scholar]
  18. Wu J, Liang B, Chen C, et al. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Infect Dis (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.07.21.20159178. [Google Scholar]
  19. Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Infect Dis (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.06.10.20126532. [Google Scholar]
  20. Fafi-Kremer S, Bruel T, Madec Y, et al. Serologic responses to SARS-CoV-2 infection among hospital staff with mild disease in eastern France. Infect Dis (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.05.19.20101832. [Google Scholar]
  21. Zhao J. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; ciaa344. [Google Scholar]
  22. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016 ; 3 : 237–261. [Google Scholar]
  23. Plotkin SA. Vaccination against SARS-2-nCoV. J Pediatr Infect Dis Soc 2020; piaa093. [Google Scholar]
  24. Grifoni A, Sidney J, Zhang Y, et al. A Sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 2020; 27 : 671–80. [CrossRef] [PubMed] [Google Scholar]
  25. Wrapp D, Wang N, Corbett K, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020 : 367 : 1260–3. [Google Scholar]
  26. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181 : 1489–501. [CrossRef] [PubMed] [Google Scholar]
  27. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol 2020; 11. [PubMed] [Google Scholar]
  28. Peeples L. News feature: avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci USA 2020; 117 : 8218–21. [CrossRef] [Google Scholar]
  29. Greenbaum JA, Kotturi MF, Kim Y, et al. Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proc Natl Acad Sci USA 2009 ; 106 : 20365–20370. [CrossRef] [Google Scholar]
  30. Wilkinson TM, Li CKF, Chui CSC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012 ; 18 : 274–280. [CrossRef] [PubMed] [Google Scholar]
  31. Sridhar S, Begom S, Bermingham A, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013 ; 19 : 1305–1312. [CrossRef] [PubMed] [Google Scholar]
  32. Hancock K, Veguilla V, Lu X, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 2009 ; 361 : 1945–1952. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.