Rétine
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 10, Octobre 2020
Rétine
Page(s) 900 - 907
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020163
Published online 07 October 2020
  1. De Verdier K, Ulla E, Löfgren S, et al. Children with blindness: major causes, developmental outcomes and implications for habilitation and educational support: a two-decade. Swedish population-based study. Acta Ophthalmol 2018 ; 96 : 295–300. [Google Scholar]
  2. Blencowe H, Lawn JE, Vazquez T, et al. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res 2013 ; 74(suppl 1): 35–49. [CrossRef] [PubMed] [Google Scholar]
  3. Chan H, Cougnard-Grégoire A, Korobelnik JF, et al. Screening for retinopathy of prematurity by telemedicine in a tertiary level neonatal intensive care unit in France: review of a six-year period. J Fr Ophtalmol 2018 ; 41 : 926–932. [CrossRef] [PubMed] [Google Scholar]
  4. Holmström G, Tornqvist K, Al-Hawasi A, et al. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences. Acta Ophthalmol 2018 ; 96 : 142–148. [CrossRef] [PubMed] [Google Scholar]
  5. Sapieha P, Joyal JS, Rivera JC, et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 2010 ; 120 : 3022–3032. [CrossRef] [PubMed] [Google Scholar]
  6. Beauchamp MH, Sennlaub F, Speranza G, et al. Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radical Bio Med 2004 ; 37 : 1885–1894. [CrossRef] [Google Scholar]
  7. Brooks SE, Gu X, Samuel S, et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 2001 ; 42 : 222–228. [PubMed] [Google Scholar]
  8. Kermorvant-Duchemin E, Sennlaub F, Sirinyan M, et al. Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration. Nat Med 2005 ; 11 : 1339–1345. [CrossRef] [PubMed] [Google Scholar]
  9. Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev 2017; 4 : CD011190. [PubMed] [Google Scholar]
  10. Brion LP, Bell EF, Raghuveer TS. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2003; CD003665. [Google Scholar]
  11. Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995 ; 1 : 1024–1028. [CrossRef] [PubMed] [Google Scholar]
  12. Pierce EA, Foley ED, Smith LE. Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol 1996; 114 : 1219–28 (erratum 1997; 115 : 427). [CrossRef] [PubMed] [Google Scholar]
  13. Shih SC, Ju M, Liu N, et al. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 2003 ; 112 : 50–57. [CrossRef] [PubMed] [Google Scholar]
  14. Chen J, Connor KM, Aderman CM, et al. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 2008 ; 118 : 526–533. [PubMed] [Google Scholar]
  15. Fang JL, Sorita A, Carey WA, et al. Interventions to prevent retinopathy of prematurity: a meta-analysis. Pediatrics 2016 ; 137 : e20153387. [Google Scholar]
  16. Hellstrom A, Perruzzi C, Ju M, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA 2001 ; 98 : 5804–5808. [CrossRef] [Google Scholar]
  17. Vanhaesebrouck S, Daniëls H, Moons L, et al. Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration. Pediatr Res 2009 ; 65 : 307–310. [CrossRef] [PubMed] [Google Scholar]
  18. Hellstrom A, Engstrom E, Hard AL, et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003 ; 112 : 1016–1020. [Google Scholar]
  19. Hellström A, Hård A-L, Engström E, et al. Early weight gain predicts retinopathy in preterm infants: new, simple, efficient approach to screening. Pediatrics 2009 ; 123 : e638–e645. [Google Scholar]
  20. Stoltz Sjöström E, Lundgren P, Öhlund I, et al. Low energy intake during the first 4 weeks of life increases the risk for severe retinopathy of prematurity in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2016; 101 : F108–13. [CrossRef] [PubMed] [Google Scholar]
  21. Ley D, Hallberg B, Hansen-Pupp I, et al. rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial. J Pediatr 2019 ; 206 : 56–65.e8. [CrossRef] [PubMed] [Google Scholar]
  22. Lapillonne A. Eleni dit Trolli S, Kermorvant-Duchemin E. Postnatal docosahexaenoic acid deficiency is an inevitable consequence of current recommendations and practice in preterm infants. Neonatology 2010 ; 98 : 397–403. [CrossRef] [PubMed] [Google Scholar]
  23. Connor KM, SanGiovanni JP, Lofqvist C, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007 ; 13 : 868–873. [CrossRef] [PubMed] [Google Scholar]
  24. Pawlik D, Lauterbach R, Walczak M, et al. Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: a prospective, randomized study. J Parenter Enteral Nutr 2014 ; 38 : 711–716. [CrossRef] [Google Scholar]
  25. Mohsen L, Abou-Alam M, El-Dib M, et al. A prospective study on hyperglycemia and retinopathy of prematurity. J Perinatol 2014 ; 34 : 453–457. [CrossRef] [PubMed] [Google Scholar]
  26. Kermorvant-Duchemin E, Pinel AC, Lavalette S, et al. Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina. PLoS One 2013 ; 8 : e79545. [CrossRef] [PubMed] [Google Scholar]
  27. International committee for the classification of retinopathy of prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol 2005; 123 : 991–9. [CrossRef] [PubMed] [Google Scholar]
  28. Barjol A, Lux AL, Soudée S, et al. Recommandations françaises pour le dépistage de la rétinopathie des prématurés. Paris : Société Française d’Ophtalmologie, 2015. [Google Scholar]
  29. Daniel E, Quinn GE, Hildebrand PL, et al. Validated system for centralized grading of retinopathy of prematurity: telemedicine approaches to evaluating acute-phase retinopathy of prematurity (e-ROP) study. JAMA Ophthalmol 2015 ; 133 : 675–682. [CrossRef] [PubMed] [Google Scholar]
  30. Campbell JP, Ataer-Cansizoglu E, Bolon-Canedo V, et al. Expert diagnosis of plus disease in retinopathy of prematurity from computer-based image analysis. JAMA Ophthalmol 2016 ; 134 : 651–657. [CrossRef] [PubMed] [Google Scholar]
  31. Early treatment for retinopathy of prematurity cooperative group Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 2003 ; 121 : 1684–1694. [CrossRef] [PubMed] [Google Scholar]
  32. Wang SD, Zhang GM, Shenzhen screening for retinopathy of prematurity cooperative group. Laser therapy versus intravitreal injection of anti-VEGF agents in monotherapy of ROP: a meta-analysis. Int J Ophthalmol 2020; 13 : 806–15. [CrossRef] [PubMed] [Google Scholar]
  33. Cryotherapy for retinopathy of prematurity cooperative group Multicenter trial of cryotherapy for retinopathy of prematurity. Preliminary results. Arch Ophthalmol 1988 ; 106 : 471–479. [CrossRef] [Google Scholar]
  34. The early treatment for retinopathy of prematurity cooperative group. Grating visual acuity results in the early treatment for retinopathy of prematurity study. Arch Ophthalmol 2011; 129 : 840–6. [CrossRef] [PubMed] [Google Scholar]
  35. Mintz-Hittner HA, Kennedy KA, Chuang AZ, et al. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 2011 ; 364 : 603–615. [Google Scholar]
  36. Han J, Kim SE, Lee SC, et al. Low dose versus conventional dose of intravitreal bevacizumab injection for retinopathy of prematurity: a case series with paired-eye comparison. Acta Ophthalmol 2018 ; 96 : e475–e478. [CrossRef] [PubMed] [Google Scholar]
  37. Stahl A, Lepore D, Fielder A, et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (Rainbow): an open-label randomised controlled trial. Lancet 2019 ; 394 : 1551–1559. [CrossRef] [PubMed] [Google Scholar]
  38. Lepore D, Quinn GE, Molle F, et al. Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology 2014 ; 121 : 2212–2219. [Google Scholar]
  39. Ittiara S, Blair MP, Shapiro MJ, et al. Exudative retinopathy and detachment: a late reactivation of retinopathy of prematurity after intravitreal bevacizumab. J AAPOS 2013 ; 17 : 323–325. [CrossRef] [PubMed] [Google Scholar]
  40. Yonekawa Y, Thomas BJ, Thanos A, et al. The cutting edge of retinopathy of prematurity care: expanding the boundaries of diagnosis and treatment. Retina 2017 ; 37 : 2208–2225. [CrossRef] [PubMed] [Google Scholar]
  41. Alyamaç Sukgen E, Çömez A, Koçluk Y, et al. The process of retinal vascularization after anti-VEGF treatment in retinopathy of prematurity: a comparison study between ranibizumab and bevacizumab. Ophthalmologica 2016; 236 : 139–47. [CrossRef] [PubMed] [Google Scholar]
  42. Novitskaya ES, Dahlmann-Noor AH, Adams GGW, et al. Retinopathy of prematurity treatment in the UK: trends in neonatal anaesthetic support and location of treatment from a national surveillance study. Eur J Pediatr 2020; May 4. doi: 10.1007/s00431-020-03650-3. [Google Scholar]
  43. Wu WC, Lien R, Liao PJ, et al. Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA Ophthalmol 2015 ; 133 : 391–397. [CrossRef] [PubMed] [Google Scholar]
  44. Hoerster R, Muether P, Dahlke C, et al. Serum concentrations of vascular endothelial growth factor in an infant treated with ranibizumab for retinopathy of prematurity. Acta Ophthalmol 2013 ; 91 : e74–e75. [CrossRef] [PubMed] [Google Scholar]
  45. Natarajan G, Shankaran S, Nolen TL, et al. Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics 2019 ; 144 : e20183537. [Google Scholar]
  46. Ahmed K, Ali AS, Delwadia N, et al. Neurodevelopmental outcomes following intravitreal bevacizumab with laser versus laser photocoagulation alone for retinopathy of prematurity. Ophthalmic Surg Lasers Imaging Retina 2020; 51 : 220–4. [CrossRef] [PubMed] [Google Scholar]
  47. Sen P, Bhende P, Rishi E, et al. Anatomical and visual outcomes in stage 5 retinopathy of prematurity with microincision vitrectomy surgery. Retina 2020; doi: 10.1097/IAE.0000000000002837. [Google Scholar]
  48. Uner OE, Rao P, Hubbard GB. Reactivation of retinopathy of prematurity in adults and adolescents. Ophthalmol Retina 2020; S2468–6530(20)30056–7. [Google Scholar]
  49. Al-Taie R, Simkin SK, Douçet E, et al. Persistent avascular retina in infants with a history of type 2 retinopathy of prematurity: to treat or not to treat?. J Pediatr Ophthalmol Strabismus 2019 ; 56 : 222–228. [Google Scholar]
  50. Hellgren KM, Tornqvist K, Jakobsson PG, et al. Ophthalmologic outcome of extremely preterm infants at 6.5 years of age: extremely preterm infants in Sweden study (Express). JAMA Ophthalmol 2016; 134 : 555–62. [CrossRef] [PubMed] [Google Scholar]
  51. Chan-Ling T, Gole GA, Quinn GE, et al. Pathophysiology, screening and treatment of ROP: a multi-disciplinary perspective. Prog Retin Eye Res 2018 ; 62 : 77–119. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.