m/s / COVID-19
Open Access
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
m/s / COVID-19
Page(s) 783 - 796
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020123
Published online 10 August 2020
  1. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003 ; 348 : 1967–1976. [Google Scholar]
  2. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 ; 367 : 1814–1820. [Google Scholar]
  3. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020 ; 395 : 565–574. [CrossRef] [PubMed] [Google Scholar]
  4. Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015 ; 21 : 1508–1513. [CrossRef] [PubMed] [Google Scholar]
  5. Hu B, Zeng L-P, Yang X-L, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017 ; 13 : e1006698. [Google Scholar]
  6. Luk HKH, Li X, Fung J, et al. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet Evol 2019 ; 71 : 21–30. [Google Scholar]
  7. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019 ; 17 : 181–192. [Google Scholar]
  8. Song HD, Tu CC, Zhang GW, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005 ; 102 : 2430–2435. [CrossRef] [Google Scholar]
  9. Sabir JSM, Lam TT-Y, Ahmed MMM, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 2016 ; 351 : 81–84. [Google Scholar]
  10. Luis AD, Hayman DTS, O’Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proc Biol Sci 2013 ; 280 : 20122753. [CrossRef] [PubMed] [Google Scholar]
  11. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [PubMed] [Google Scholar]
  12. Ge XY, Wang N, Zhang W, et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol Sin 2016 ; 31 : 31–40. [Google Scholar]
  13. Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 2020; 30 : 2196–2203.e3. [CrossRef] [PubMed] [Google Scholar]
  14. Ferron F, Subissi L, Silveira De Morais AT, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA 2018 ; 115 : E162–E171. [CrossRef] [Google Scholar]
  15. Casane D, Policarpo M, Laurenti P. Pourquoi le taux de mutation n’est-il jamais égal à zéro ?. Med Sci (Paris) 2019 ; 35 : 245–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2010 ; 84 : 3134–3146. [CrossRef] [PubMed] [Google Scholar]
  17. Lam TTY, Shum MHH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 2020. doi: 10.1038/s41586-020-2169-0. [Google Scholar]
  18. Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2020; 1–7. [Google Scholar]
  19. Liu P, Jiang J-Z, Wan XF, et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?. PLoS Pathog 2020 ; 16 : e1008421. [CrossRef] [PubMed] [Google Scholar]
  20. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30 : 1346–1351.e2. [CrossRef] [PubMed] [Google Scholar]
  21. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 ; 395; 497–506. [Google Scholar]
  22. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med 2020; 26 : 450–52. [CrossRef] [PubMed] [Google Scholar]
  23. Cheng VCC, Lau SKP, Woo PCY, et al. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007 ; 20 : 660–694. [CrossRef] [PubMed] [Google Scholar]
  24. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 : 1016–35.e19. [CrossRef] [PubMed] [Google Scholar]
  25. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 : 271–80.e8. [CrossRef] [PubMed] [Google Scholar]
  26. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367 : 1260–3. [Google Scholar]
  27. Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181 : 281–92.e6. [CrossRef] [PubMed] [Google Scholar]
  28. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181 : 894–904.e9. [CrossRef] [PubMed] [Google Scholar]
  29. Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 2020; S1074–7613(20)30181–3. [Google Scholar]
  30. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5 : 562–9. [Google Scholar]
  31. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367 : 1444–8. [Google Scholar]
  32. Russell CA, Fonville JM, Brown AEX, et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 2012 ; 336 : 1541–1547. [Google Scholar]
  33. Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012 ; 486 : 420–428. [PubMed] [Google Scholar]
  34. Committee on Science T, Affairs P and G, Sciences B on L, et al. Official statements. National Academies Press (US), 2013. [Google Scholar]
  35. Van Boeckel TP, Tildesley MJ, Linard C, et al. The Nosoi commute: a spatial perspective on the rise of BSL-4 laboratories in cities. arXiv:1312.3283 [q-bio] 2013. [Google Scholar]
  36. Enserink M.. Singapore Lab Faulted in SARS Case. Science 2003 ; 301 : 1824. [Google Scholar]
  37. Normile D.. Lab accidents prompt calls for new containment program. Science 2004 ; 304 : 1223–1225. [Google Scholar]
  38. Henkel RD, Miller T, Weyant RS. Monitoring select agent theft, loss and release reports in the United States-2004–2010. Applied Biosafety 2012. [Google Scholar]
  39. Ren W, Qu X, Li W, et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. JVI 2008 ; 82 : 1899–1907. [CrossRef] [Google Scholar]
  40. Menachery VD, Dinnon KH, Yount BL, et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J Virol 2020; 94 : e01774–19. [PubMed] [Google Scholar]
  41. Zeng LP, Gao YT, Ge XY, et al. Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response. J Virol 2016 ; 90 : 6573–6582. [CrossRef] [PubMed] [Google Scholar]
  42. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006 ; 350 : 358–369. [CrossRef] [PubMed] [Google Scholar]
  43. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009 ; 106 : 5871–5876. [CrossRef] [Google Scholar]
  44. Thao TTN, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020; 1–8. [Google Scholar]
  45. Coutard B, Valle C, Lamballerie X de, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176 : 104742. [CrossRef] [PubMed] [Google Scholar]
  46. Moulard M, Decroly E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim Biophys Acta 2000 ; 1469 : 121–132. [CrossRef] [PubMed] [Google Scholar]
  47. Sun X, Tse LV, Ferguson AD, et al. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 2010 ; 84 : 8683–8690. [CrossRef] [PubMed] [Google Scholar]
  48. Lau SY, Wang P, Mok BWY, et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect 2020; 9 : 837–842. [CrossRef] [PubMed] [Google Scholar]
  49. Matsuyama S, Shirato K, Kawase M, et al. Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells. J Virol 2018 ; 92 : e00683–e00618. [CrossRef] [PubMed] [Google Scholar]
  50. Pradhan P, Pandey AK, Mishra A, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. BioRxiv 2020; 2020.01.30.927871. [Google Scholar]
  51. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117 : 11727–34. [CrossRef] [Google Scholar]
  52. Hassanin A. The SARS-CoV-2-like virus found in captive pangolins from Guangdong should be better sequenced. BioRxiv 2020; 2020.05.07.077016. [Google Scholar]
  53. Gu H, Chu D, Peiris M, et al. Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. BioRxiv 2020; 2020.02.15.950568. [Google Scholar]
  54. Hua L, Gong S, Wang F, et al. Captive breeding of pangolins: current status, problems and future prospects. Zookeys 2015 ; 99–114. [Google Scholar]
  55. Gibbs AJ, Armstrong JS, Downie JC. From where did the 2009 swine-origin influenza A virus (H1N1) emerge?. Virol J 2009 ; 6 : 207. [CrossRef] [PubMed] [Google Scholar]
  56. NIH. Statement on funding pause on certain types of gain-of-function research. National Institutes of Health (NIH), 2015. [Google Scholar]
  57. Burki T.. Ban on gain-of-function studies ends. Lancet Infect Dis 2018 ; 18 : 148–149. [CrossRef] [PubMed] [Google Scholar]
  58. Iseni F, Tournier JN. Une course contre la montre : création du SARS-CoV-2 en laboratoire, un mois après son émergence ! Med Sci (Paris) 2020; 36 : 797–801. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.