m/s / COVID-19
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
m/s / COVID-19
Page(s) 775 - 782
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020122
Published online 05 August 2020
  1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019 ; 17 : 181–192. [CrossRef] [PubMed] [Google Scholar]
  2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92 : 418–23. [CrossRef] [PubMed] [Google Scholar]
  3. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020 Apr 10;e201127. doi: 10.1001/jamaneurol.2020.1127. [Google Scholar]
  4. Zhou P, Yang X Lou, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [Google Scholar]
  5. Ye ZW, Yuan S, Yuen KS, et al. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 2020 : 1686–97. [Google Scholar]
  6. Ge XYY, Li JLL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013 ; 503 : 535–538. [Google Scholar]
  7. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013 ; 495 : 251–254. [Google Scholar]
  8. Desforges M, Le Coupanec A, Stodola JK, et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014 ; 194 : 145–158. [CrossRef] [PubMed] [Google Scholar]
  9. Nath A. Neurologic complications of coronavirus infections. Neurology 2020; 94 : 809–10. [Google Scholar]
  10. Li Y, Li H, Fan R, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology 2017 ; 59 : 163–169. [Google Scholar]
  11. Ann Yeh E, Collins A, Cohen ME, et al. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 2004; 113 : e73–6. [CrossRef] [PubMed] [Google Scholar]
  12. Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med 2016 ; 375 : 497–498. [Google Scholar]
  13. A N, N E, J A, et al. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis 2020; 52. [PubMed] [Google Scholar]
  14. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005 ; 202 : 415–424. [CrossRef] [PubMed] [Google Scholar]
  15. Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine Mig in pathogenesis. Clin Infect Dis 2005 ; 41 : 1089–1096. [CrossRef] [PubMed] [Google Scholar]
  16. Yuan J, Yang S, Wang S, et al. Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) in adults-a case report and literature review. BMC Neurol 2017 ; 17 : 103. [CrossRef] [PubMed] [Google Scholar]
  17. Algahtani H, Subahi A, Shirah B. Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases and review of the literature. Case Rep Neurol Med 2016 ; 2016 : 3502683. [PubMed] [Google Scholar]
  18. Ym A, A H, J H, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 2015 ; 43 : [Google Scholar]
  19. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 10.1002/jmv.25728. doi: 10.1002/jmv.25728. [Google Scholar]
  20. Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J. Clin. Neurosci 2020. [Google Scholar]
  21. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 10.1212/WNL.0000000000009619. doi: 10.1212/WNL.0000000000009619. [Google Scholar]
  22. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 2020; 94 : 55–8. [CrossRef] [PubMed] [Google Scholar]
  23. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; NEJMc2008597. doi: 10.1056/NEJMc2008597. [Google Scholar]
  24. Jacomy H, St-Jean JR, Brison E, et al. Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. J Neurovirol 2010 ; 16 : 279–293. [CrossRef] [PubMed] [Google Scholar]
  25. Do Carmo S, Jacomy H, Talbot PJ, et al. Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J Neurosci 2008 ; 28 : 10330–10338. [CrossRef] [PubMed] [Google Scholar]
  26. Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; doi: 10.1038/s41586-020-2312-y. [Google Scholar]
  27. Miner JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol 2016 ; 38 : 18–23. [CrossRef] [PubMed] [Google Scholar]
  28. Bleau C, Filliol A, Samson M, et al. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J Virol 2015 ; 89 : 9896–9908. [CrossRef] [PubMed] [Google Scholar]
  29. Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002 ; 532 : 107–110. [CrossRef] [PubMed] [Google Scholar]
  30. Magrone T, Magrone M, Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target: a perspective. Endocr Metab Immune Disord Drug Targets 2020; 20 : doi: 10.2174/1871530320666200427112902. [Google Scholar]
  31. Salinas S, Schiavo G, Kremer EJ. A hitchhiker’s guide to the nervous system: the complex journey of viruses and toxins. Nat Re Microbiol 2010 ; 8 : 645–655. [Google Scholar]
  32. Kalinke U, Bechmann I, Detje CN. Host strategies against virus entry via the olfactory system. Virulence 2011; 2. [Google Scholar]
  33. Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017 ; 308 : 43–49. [CrossRef] [PubMed] [Google Scholar]
  34. Bilinska K, Jakubowska P, Bartheld CS VON, et al. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 2020; acschemneuro.0c00210. doi: 10.1021/acschemneuro.0c00210. [Google Scholar]
  35. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020; 181 : 271–280.e8. [CrossRef] [PubMed] [Google Scholar]
  36. Dubé M, Le Coupanec A, Wong AHM, et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 2018 ; 92 : [Google Scholar]
  37. Tseng CTK, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol 2007 ; 81 : 1162–1173. [PubMed] [Google Scholar]
  38. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008 ; 82 : 7264–7275. [PubMed] [Google Scholar]
  39. Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 1990 ; 64 : 5367–5375. [PubMed] [Google Scholar]
  40. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015 ; 202 : 120–134. [CrossRef] [PubMed] [Google Scholar]
  41. Talbot PJ, Desforges M, Dubé M, et al. Coronavirus respiratoires humains neurotropes : une relation ambiguë entre neurovirulence et clivage protéique. Med Sci (Paris) 2016 ; 32 : 696–699. [EDP Sciences] [PubMed] [Google Scholar]
  42. Brison E, Jacomy H, Desforges M, et al. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011 ; 85 : 12464–12473. [PubMed] [Google Scholar]
  43. Favreau DJ, Meessen-Pinard M, Desforges M, et al. Human coronavirus-iinduced neuronal programmed cell death is cyclophilin D dependent and potentially caspase dispensable. J Virol 2012 ; 86 : 81–93. [PubMed] [Google Scholar]
  44. Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010 ; 5 : 336–354. [Google Scholar]
  45. Falzarano D, de Wit E, Feldmann F, et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog 2014 ; 10 : [Google Scholar]
  46. Reinke LM, Spiegel M, Plegge T, et al. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS One 2017 ; 12 : [Google Scholar]
  47. Zhao G, Jiang Y, Qiu H, et al. Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus. PLoS One 2015 ; 10 : [Google Scholar]
  48. Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004 ; 10 : 342–344. [PubMed] [Google Scholar]
  49. Yamashita M, Yamate M, Li GM, et al. Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem Biophys Res Commun 2005 ; 334 : 79–85. [Google Scholar]
  50. McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007 ; 81 : 813–821. [PubMed] [Google Scholar]
  51. Desforges M, Coupanec A Le, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019; 12. [Google Scholar]
  52. Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 2016 ; 15 : 327–347. [PubMed] [Google Scholar]
  53. Sallard E, Halloy J, Casane D, et al. Retrouver les origines du SARS-COV-2 dans les phylogénies de coronavirus. Med Sci (Paris) 2020; 36 : 783–96. [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.