m/s / COVID-19
Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 8-9, Août–Septembre 2020
m/s / COVID-19
Page(s) 775 - 782
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020122
Publié en ligne 5 août 2020
  1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019 ; 17 : 181–192. [Google Scholar]
  2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020; 92 : 418–23. [Google Scholar]
  3. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020 Apr 10;e201127. doi: 10.1001/jamaneurol.2020.1127. [Google Scholar]
  4. Zhou P, Yang X Lou, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [PubMed] [Google Scholar]
  5. Ye ZW, Yuan S, Yuen KS, et al. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020; 2020 : 1686–97. [Google Scholar]
  6. Ge XYY, Li JLL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013 ; 503 : 535–538. [PubMed] [Google Scholar]
  7. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013 ; 495 : 251–254. [CrossRef] [PubMed] [Google Scholar]
  8. Desforges M, Le Coupanec A, Stodola JK, et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014 ; 194 : 145–158. [CrossRef] [PubMed] [Google Scholar]
  9. Nath A. Neurologic complications of coronavirus infections. Neurology 2020; 94 : 809–10. [Google Scholar]
  10. Li Y, Li H, Fan R, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology 2017 ; 59 : 163–169. [Google Scholar]
  11. Ann Yeh E, Collins A, Cohen ME, et al. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 2004; 113 : e73–6. [CrossRef] [PubMed] [Google Scholar]
  12. Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med 2016 ; 375 : 497–498. [Google Scholar]
  13. A N, N E, J A, et al. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis 2020; 52. [PubMed] [Google Scholar]
  14. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005 ; 202 : 415–424. [CrossRef] [PubMed] [Google Scholar]
  15. Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine Mig in pathogenesis. Clin Infect Dis 2005 ; 41 : 1089–1096. [CrossRef] [PubMed] [Google Scholar]
  16. Yuan J, Yang S, Wang S, et al. Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) in adults-a case report and literature review. BMC Neurol 2017 ; 17 : 103. [CrossRef] [PubMed] [Google Scholar]
  17. Algahtani H, Subahi A, Shirah B. Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases and review of the literature. Case Rep Neurol Med 2016 ; 2016 : 3502683. [PubMed] [Google Scholar]
  18. Ym A, A H, J H, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 2015 ; 43 : [Google Scholar]
  19. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 10.1002/jmv.25728. doi: 10.1002/jmv.25728. [Google Scholar]
  20. Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J. Clin. Neurosci 2020. [Google Scholar]
  21. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 10.1212/WNL.0000000000009619. doi: 10.1212/WNL.0000000000009619. [Google Scholar]
  22. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 2020; 94 : 55–8. [CrossRef] [PubMed] [Google Scholar]
  23. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; NEJMc2008597. doi: 10.1056/NEJMc2008597. [Google Scholar]
  24. Jacomy H, St-Jean JR, Brison E, et al. Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. J Neurovirol 2010 ; 16 : 279–293. [CrossRef] [PubMed] [Google Scholar]
  25. Do Carmo S, Jacomy H, Talbot PJ, et al. Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J Neurosci 2008 ; 28 : 10330–10338. [CrossRef] [PubMed] [Google Scholar]
  26. Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; doi: 10.1038/s41586-020-2312-y. [Google Scholar]
  27. Miner JJ, Diamond MS. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol 2016 ; 38 : 18–23. [CrossRef] [PubMed] [Google Scholar]
  28. Bleau C, Filliol A, Samson M, et al. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J Virol 2015 ; 89 : 9896–9908. [CrossRef] [PubMed] [Google Scholar]
  29. Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002 ; 532 : 107–110. [CrossRef] [PubMed] [Google Scholar]
  30. Magrone T, Magrone M, Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target: a perspective. Endocr Metab Immune Disord Drug Targets 2020; 20 : doi: 10.2174/1871530320666200427112902. [Google Scholar]
  31. Salinas S, Schiavo G, Kremer EJ. A hitchhiker’s guide to the nervous system: the complex journey of viruses and toxins. Nat Re Microbiol 2010 ; 8 : 645–655. [CrossRef] [Google Scholar]
  32. Kalinke U, Bechmann I, Detje CN. Host strategies against virus entry via the olfactory system. Virulence 2011; 2. [Google Scholar]
  33. Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017 ; 308 : 43–49. [CrossRef] [PubMed] [Google Scholar]
  34. Bilinska K, Jakubowska P, Bartheld CS VON, et al. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 2020; acschemneuro.0c00210. doi: 10.1021/acschemneuro.0c00210. [Google Scholar]
  35. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020; 181 : 271–280.e8. [CrossRef] [PubMed] [Google Scholar]
  36. Dubé M, Le Coupanec A, Wong AHM, et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 2018 ; 92 : [Google Scholar]
  37. Tseng CTK, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol 2007 ; 81 : 1162–1173. [CrossRef] [PubMed] [Google Scholar]
  38. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008 ; 82 : 7264–7275. [Google Scholar]
  39. Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 1990 ; 64 : 5367–5375. [CrossRef] [PubMed] [Google Scholar]
  40. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015 ; 202 : 120–134. [CrossRef] [PubMed] [Google Scholar]
  41. Talbot PJ, Desforges M, Dubé M, et al. Coronavirus respiratoires humains neurotropes : une relation ambiguë entre neurovirulence et clivage protéique. Med Sci (Paris) 2016 ; 32 : 696–699. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Brison E, Jacomy H, Desforges M, et al. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011 ; 85 : 12464–12473. [CrossRef] [PubMed] [Google Scholar]
  43. Favreau DJ, Meessen-Pinard M, Desforges M, et al. Human coronavirus-iinduced neuronal programmed cell death is cyclophilin D dependent and potentially caspase dispensable. J Virol 2012 ; 86 : 81–93. [CrossRef] [PubMed] [Google Scholar]
  44. Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010 ; 5 : 336–354. [Google Scholar]
  45. Falzarano D, de Wit E, Feldmann F, et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog 2014 ; 10 : [Google Scholar]
  46. Reinke LM, Spiegel M, Plegge T, et al. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS One 2017 ; 12 : [Google Scholar]
  47. Zhao G, Jiang Y, Qiu H, et al. Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus. PLoS One 2015 ; 10 : [Google Scholar]
  48. Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004 ; 10 : 342–344. [CrossRef] [PubMed] [Google Scholar]
  49. Yamashita M, Yamate M, Li GM, et al. Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem Biophys Res Commun 2005 ; 334 : 79–85. [Google Scholar]
  50. McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007 ; 81 : 813–821. [CrossRef] [PubMed] [Google Scholar]
  51. Desforges M, Coupanec A Le, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019; 12. [Google Scholar]
  52. Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 2016 ; 15 : 327–347. [CrossRef] [PubMed] [Google Scholar]
  53. Sallard E, Halloy J, Casane D, et al. Retrouver les origines du SARS-COV-2 dans les phylogénies de coronavirus. Med Sci (Paris) 2020; 36 : 783–96. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.