Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 8-9, Août–Septembre 2020
m/s / COVID-19
|
|
---|---|---|
Page(s) | 783 - 796 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020123 | |
Publié en ligne | 10 août 2020 |
- Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003 ; 348 : 1967–1976. [Google Scholar]
- Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 ; 367 : 1814–1820. [Google Scholar]
- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020 ; 395 : 565–574. [CrossRef] [PubMed] [Google Scholar]
- Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015 ; 21 : 1508–1513. [CrossRef] [PubMed] [Google Scholar]
- Hu B, Zeng L-P, Yang X-L, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017 ; 13 : e1006698. [Google Scholar]
- Luk HKH, Li X, Fung J, et al. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet Evol 2019 ; 71 : 21–30. [Google Scholar]
- Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019 ; 17 : 181–192. [Google Scholar]
- Song HD, Tu CC, Zhang GW, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005 ; 102 : 2430–2435. [CrossRef] [Google Scholar]
- Sabir JSM, Lam TT-Y, Ahmed MMM, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 2016 ; 351 : 81–84. [Google Scholar]
- Luis AD, Hayman DTS, O’Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proc Biol Sci 2013 ; 280 : 20122753. [CrossRef] [PubMed] [Google Scholar]
- Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–3. [PubMed] [Google Scholar]
- Ge XY, Wang N, Zhang W, et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol Sin 2016 ; 31 : 31–40. [Google Scholar]
- Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 2020; 30 : 2196–2203.e3. [CrossRef] [PubMed] [Google Scholar]
- Ferron F, Subissi L, Silveira De Morais AT, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA 2018 ; 115 : E162–E171. [CrossRef] [Google Scholar]
- Casane D, Policarpo M, Laurenti P. Pourquoi le taux de mutation n’est-il jamais égal à zéro ?. Med Sci (Paris) 2019 ; 35 : 245–251. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Graham RL, Baric RS. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2010 ; 84 : 3134–3146. [CrossRef] [PubMed] [Google Scholar]
- Lam TTY, Shum MHH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 2020. doi: 10.1038/s41586-020-2169-0. [Google Scholar]
- Xiao K, Zhai J, Feng Y, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2020; 1–7. [Google Scholar]
- Liu P, Jiang J-Z, Wan XF, et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?. PLoS Pathog 2020 ; 16 : e1008421. [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30 : 1346–1351.e2. [CrossRef] [PubMed] [Google Scholar]
- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 ; 395; 497–506. [Google Scholar]
- Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med 2020; 26 : 450–52. [CrossRef] [PubMed] [Google Scholar]
- Cheng VCC, Lau SKP, Woo PCY, et al. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007 ; 20 : 660–694. [CrossRef] [PubMed] [Google Scholar]
- Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 : 1016–35.e19. [CrossRef] [PubMed] [Google Scholar]
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 : 271–80.e8. [CrossRef] [PubMed] [Google Scholar]
- Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367 : 1260–3. [Google Scholar]
- Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181 : 281–92.e6. [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181 : 894–904.e9. [CrossRef] [PubMed] [Google Scholar]
- Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 2020; S1074–7613(20)30181–3. [Google Scholar]
- Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5 : 562–9. [Google Scholar]
- Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367 : 1444–8. [Google Scholar]
- Russell CA, Fonville JM, Brown AEX, et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 2012 ; 336 : 1541–1547. [Google Scholar]
- Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012 ; 486 : 420–428. [PubMed] [Google Scholar]
- Committee on Science T, Affairs P and G, Sciences B on L, et al. Official statements. National Academies Press (US), 2013. [Google Scholar]
- Van Boeckel TP, Tildesley MJ, Linard C, et al. The Nosoi commute: a spatial perspective on the rise of BSL-4 laboratories in cities. arXiv:1312.3283 [q-bio] 2013. [Google Scholar]
- Enserink M.. Singapore Lab Faulted in SARS Case. Science 2003 ; 301 : 1824. [Google Scholar]
- Normile D.. Lab accidents prompt calls for new containment program. Science 2004 ; 304 : 1223–1225. [Google Scholar]
- Henkel RD, Miller T, Weyant RS. Monitoring select agent theft, loss and release reports in the United States-2004–2010. Applied Biosafety 2012. [Google Scholar]
- Ren W, Qu X, Li W, et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. JVI 2008 ; 82 : 1899–1907. [CrossRef] [Google Scholar]
- Menachery VD, Dinnon KH, Yount BL, et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J Virol 2020; 94 : e01774–19. [PubMed] [Google Scholar]
- Zeng LP, Gao YT, Ge XY, et al. Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response. J Virol 2016 ; 90 : 6573–6582. [CrossRef] [PubMed] [Google Scholar]
- Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006 ; 350 : 358–369. [CrossRef] [PubMed] [Google Scholar]
- Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009 ; 106 : 5871–5876. [CrossRef] [Google Scholar]
- Thao TTN, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020; 1–8. [Google Scholar]
- Coutard B, Valle C, Lamballerie X de, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176 : 104742. [CrossRef] [PubMed] [Google Scholar]
- Moulard M, Decroly E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim Biophys Acta 2000 ; 1469 : 121–132. [CrossRef] [PubMed] [Google Scholar]
- Sun X, Tse LV, Ferguson AD, et al. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 2010 ; 84 : 8683–8690. [CrossRef] [PubMed] [Google Scholar]
- Lau SY, Wang P, Mok BWY, et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect 2020; 9 : 837–842. [CrossRef] [PubMed] [Google Scholar]
- Matsuyama S, Shirato K, Kawase M, et al. Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells. J Virol 2018 ; 92 : e00683–e00618. [CrossRef] [PubMed] [Google Scholar]
- Pradhan P, Pandey AK, Mishra A, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. BioRxiv 2020; 2020.01.30.927871. [Google Scholar]
- Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117 : 11727–34. [CrossRef] [Google Scholar]
- Hassanin A. The SARS-CoV-2-like virus found in captive pangolins from Guangdong should be better sequenced. BioRxiv 2020; 2020.05.07.077016. [Google Scholar]
- Gu H, Chu D, Peiris M, et al. Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. BioRxiv 2020; 2020.02.15.950568. [Google Scholar]
- Hua L, Gong S, Wang F, et al. Captive breeding of pangolins: current status, problems and future prospects. Zookeys 2015 ; 99–114. [Google Scholar]
- Gibbs AJ, Armstrong JS, Downie JC. From where did the 2009 swine-origin influenza A virus (H1N1) emerge?. Virol J 2009 ; 6 : 207. [CrossRef] [PubMed] [Google Scholar]
- NIH. Statement on funding pause on certain types of gain-of-function research. National Institutes of Health (NIH), 2015. [Google Scholar]
- Burki T.. Ban on gain-of-function studies ends. Lancet Infect Dis 2018 ; 18 : 148–149. [CrossRef] [PubMed] [Google Scholar]
- Iseni F, Tournier JN. Une course contre la montre : création du SARS-CoV-2 en laboratoire, un mois après son émergence ! Med Sci (Paris) 2020; 36 : 797–801. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.