Open Access
Med Sci (Paris)
Volume 36, Number 3, Mars 2020
Page(s) 253 - 260
Section M/S Revues
Published online 31 March 2020
  1. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002 ; 3 : 991–998. [CrossRef] [PubMed] [Google Scholar]
  2. Kanno Y, Vahedi G, Hirahara K, et al. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 2012 ; 30 : 707–731. [CrossRef] [PubMed] [Google Scholar]
  3. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010 ; 327 : 1098–1102. [Google Scholar]
  4. Curtsinger JM, Schmidt CS, Mondino A, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999 ; 162 : 3256–3262. [PubMed] [Google Scholar]
  5. Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992 ; 356 : 607–609. [Google Scholar]
  6. O’Shea JJ, Lahesmaa R, Vahedi G, et al. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 2011 ; 11 : 239–250. [Google Scholar]
  7. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 2009 ; 9 : 91–105. [Google Scholar]
  8. Allan RS, Zueva E, Cammas F, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 2012 ; 487 : 249–253. [Google Scholar]
  9. Adoue V, Binet B, Malbec A, et al. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity 2019 ; 50 : 629–644. [CrossRef] [PubMed] [Google Scholar]
  10. Bird JJ, Brown DR, Mullen AC, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 1998 ; 9 : 229–237. [CrossRef] [PubMed] [Google Scholar]
  11. Bertin A, Mangenot S. Structure et dynamique de la particule coeur de nucléosome. Med Sci (Paris) 2008 ; 24 : 715–719. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Grogan JL, Mohrs M, Harmon B, et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 2001 ; 14 : 205–215. [Google Scholar]
  13. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006 ; 31 : 89–97. [CrossRef] [PubMed] [Google Scholar]
  14. Lauberth SM, Nakayama T, Wu X, et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 2013 ; 152 : 1021–1036. [CrossRef] [PubMed] [Google Scholar]
  15. Mozzetta C, Boyarchuk E, Pontis J, Ait-Si-Ali S. Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015 ; 16 : 499–513. [CrossRef] [PubMed] [Google Scholar]
  16. Lachner M, O’Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001 ; 410 : 116–120. [Google Scholar]
  17. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001 ; 107 : 323–337. [CrossRef] [PubMed] [Google Scholar]
  18. Bilodeau S, Kagey MH, Frampton GM, et al. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 2009 ; 23 : 2484–2489. [CrossRef] [PubMed] [Google Scholar]
  19. Liu J, Magri L, Zhang F, et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 2015 ; 35 : 352–365. [CrossRef] [PubMed] [Google Scholar]
  20. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell 2005 ; 19 : 381–391. [CrossRef] [PubMed] [Google Scholar]
  21. Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 2011 ; 18 : 337–344. [CrossRef] [PubMed] [Google Scholar]
  22. Zueva E, Allan RS, Cammas F, et al. Contrôle épigénétique de la stabilité phénotypique et fonctionnelle des lymphocytes Th2 par la voie Suv39h1/HP1a. Med Sci (Paris) 2012 ; 28 : 1032–1034. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Pace L, Goudot C, Zueva E, et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 2018 ; 359 : 177–186. [Google Scholar]
  24. Loyola A, Tagami H, Bonaldi T, et al. The HP1α–CAF1–SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009 ; 10 : 769–775. [PubMed] [Google Scholar]
  25. Schultz DC, Ayyanathan K, Negorev D, et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002 ; 16 : 919–932. [CrossRef] [PubMed] [Google Scholar]
  26. Xiao X, Shi X, Fan Y, et al. The costimulatory receptor OX40 inhibits interleukin-17 expression through activation of repressive chromatin remodeling pathways. Immunity 2016 ; 44 : 1271–1283. [CrossRef] [PubMed] [Google Scholar]
  27. Bulut-Karslioglu A, De La Rosa-Velázquez IA, Ramirez F, et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 2014 ; 55 : 277–290. [CrossRef] [PubMed] [Google Scholar]
  28. Karimi MM, Goyal P, Maksakova IA, et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 2011 ; 8 : 676–687. [Google Scholar]
  29. Rebollo R, Karimi MM, Bilenky M, et al. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLOS Genet 2011 ; 7 : e1002301. [PubMed] [Google Scholar]
  30. Thompson PJ, Macfarlan TS, Lorincz MC. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell 2016 ; 62 : 766–776. [CrossRef] [PubMed] [Google Scholar]
  31. Rowe HM, Kapopoulou A, Corsinotti A, et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013 ; 23 : 452–461. [CrossRef] [PubMed] [Google Scholar]
  32. Ecco G, Cassano M, Kauzlaric A, et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev Cell 2016 ; 36 : 611–623. [CrossRef] [PubMed] [Google Scholar]
  33. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2017 ; 18 : 71–86. [CrossRef] [PubMed] [Google Scholar]
  34. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 2016 ; 351 : 1083–1087. [Google Scholar]
  35. Friedli M, Trono D. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 2015 ; 31 : 429–451. [PubMed] [Google Scholar]
  36. Peaston AE, Evsikov AV, Graber JH, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004 ; 7 : 597–606. [CrossRef] [PubMed] [Google Scholar]
  37. Sundaram V, Cheng Y, Ma Z, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 2014 ; 24 : 1963–1976. [CrossRef] [PubMed] [Google Scholar]
  38. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012 ; 12 : 298–306. [Google Scholar]
  39. Chikuma S, Suita N, Okazaki IM, et al. TRIM28 prevents autoinflammatory T cell development in vivo. Nat Immunol 2012 ; 13 : 596–603. [CrossRef] [PubMed] [Google Scholar]
  40. Liu B, Tahk S, Yee KM, et al. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 2010 ; 330 : 521–525. [Google Scholar]
  41. Martin FJ, Xu Y, Lohmann F, et al. KMT1E-mediated chromatin modifications at the FcgRIIb promoter regulate thymocyte development. Genes Immun 2015 ; 16 : 162–169. [CrossRef] [PubMed] [Google Scholar]
  42. Santoni de Sio FR, Barde I, Offner S, et al. KAP1 regulates gene networks controlling T-cell development and responsiveness. FASEB J 2012 ; 26 : 4561–4575. [CrossRef] [PubMed] [Google Scholar]
  43. Takikita S, Muo R, Takai T, et al. A histone methyltransferase ESET is critical for T cell development. J Immunol 2016 ; 197 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
  44. Taniuchi I, Sunshine MJ, Festenstein R, Littman DR. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Mol Cell 2002 ; 10 : 1083–1096. [CrossRef] [PubMed] [Google Scholar]
  45. Zhou ZF, Yu J, Chang M, et al. TRIM28 mediates chromatin modifications at the TCR enhancer and regulates the development of T and natural killer T cells. Proc Natl Acad Sci USA 2012 ; 109 : 20083–20089. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.