Open Access
Issue |
Med Sci (Paris)
Volume 36, Number 3, Mars 2020
|
|
---|---|---|
Page(s) | 243 - 252 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020026 | |
Published online | 31 March 2020 |
- Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet 2018 ; 391 : 1622–1636. [CrossRef] [PubMed] [Google Scholar]
- Zephir H.. Progress in understanding the pathophysiology of multiple sclerosis. Rev Neurol (Paris) 2018 ; 174 : 358–363. [CrossRef] [PubMed] [Google Scholar]
- Brambilla R.. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019 ; 137 : 757–783. [CrossRef] [PubMed] [Google Scholar]
- Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 2015 ; 163 : 56–68. [CrossRef] [PubMed] [Google Scholar]
- Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 2018 ; 391 : 1263–1273. [CrossRef] [PubMed] [Google Scholar]
- Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011 ; 69 : 292–302. [CrossRef] [PubMed] [Google Scholar]
- Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018 ; 17 : 162–173. [CrossRef] [PubMed] [Google Scholar]
- Cortese R, Collorone S, Ciccarelli O, Toosy AT. Advances in brain imaging in multiple sclerosis. Ther Adv Neurol Disord 2019 ; 12 : 1756286419859722. [CrossRef] [PubMed] [Google Scholar]
- Weber MS, Hohlfeld R, Zamvil SS. Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 2007 ; 4 : 647–653. [Google Scholar]
- Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and other CD20+ B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics 2017 ; 14 : 835–841. [Google Scholar]
- Papeix C, Lubetzki C. Anticorps monoclonaux dans la sclérose en plaques. Med Sci (Paris) 2009 ; 25 : 1113–1115. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Brown JWL, Coles A, Horakova D, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 2019 ; 321 : 175–187. [CrossRef] [PubMed] [Google Scholar]
- Rommer PS, Milo R, Han MH, et al. Immunological aspects of approved MS therapeutics. Front Immunol 2019 ; 10 : 1564. [CrossRef] [PubMed] [Google Scholar]
- Holmoy T, Fevang B, Olsen DB, et al. Adverse events with fatal outcome associated with alemtuzumab treatment in multiple sclerosis. BMC Res Notes 2019 ; 12 : 497. [CrossRef] [PubMed] [Google Scholar]
- Lublin F, Miller DH, Freedman MS, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016 ; 387 : 1075–1084. [CrossRef] [PubMed] [Google Scholar]
- Gazit SL, Mariko B, Therond P, et al. Platelet and erythrocyte sources of S1P are redundant for vascular development and homeostasis, but both rendered essential after plasma S1P depletion in anaphylactic shock. Circ Res 2016 ; 119 : e110–e126. [Google Scholar]
- Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015 ; 125 : 1379–1387. [CrossRef] [PubMed] [Google Scholar]
- Blaho VA, Chun J. Crystal clear? Lysophospholipid receptor structure insights and controversies. Trends Pharmacol Sci 2018 ; 39 : 953–966. [Google Scholar]
- Sarramegna V, Muller I, Milon A, Talmont F. Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell Mol Life Sci. 2006 ; 63 : 1149–1164. [CrossRef] [PubMed] [Google Scholar]
- Schioth HB, Fredriksson R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 2005 ; 142 : 94–101. [CrossRef] [PubMed] [Google Scholar]
- Cuvillier O.. Les récepteurs de la sphingosine 1-phosphate : de la biologie à la physiopathologie. Med Sci (Paris) 2012 ; 28 : 951–957. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Alexander SPH, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 2019 ; 176 : suppl 1 S21–141. [PubMed] [Google Scholar]
- Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000 ; 106 : 951–961. [CrossRef] [PubMed] [Google Scholar]
- Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 2007 ; 8 : 1295–1301. [CrossRef] [PubMed] [Google Scholar]
- Healy LM, Antel JP. Sphingosine-1-phosphate receptors in the central nervous and immune systems. Curr Drug Targets 2016 ; 17 : 1841–1850. [CrossRef] [PubMed] [Google Scholar]
- Talmont F, Mouledous L. Evaluation of commercial antibodies against human sphingosine-1-phosphate receptor 1. Naunyn Schmiedebergs Arch Pharmacol 2014 ; 387 : 427–431. [CrossRef] [PubMed] [Google Scholar]
- Talmont F, Mouledous L, Baranger M, et al. Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS One 2019 ; 14 : e0213203. [CrossRef] [PubMed] [Google Scholar]
- Talmont F, Mouledous L, Boue J, et al. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies. PLoS One 2012 ; 7 : e46348. [CrossRef] [PubMed] [Google Scholar]
- Adada M, Canals D, Hannun YA, Obeid LM. Sphingosine-1-phosphate receptor 2. FEBS J 2013 ; 280 : 6354–6366. [CrossRef] [PubMed] [Google Scholar]
- Seyedsadr MS, Weinmann O, Amorim A, et al. Inactivation of sphingosine-1-phosphate receptor 2 (S1PR2) decreases demyelination and enhances remyelination in animal models of multiple sclerosis. Neurobiol Dis 2019 ; 124 : 189–201. [CrossRef] [PubMed] [Google Scholar]
- Cattoretti G, Mandelbaum J, Lee N, et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res 2009 ; 69 : 8686–8692. [Google Scholar]
- Jaillard C, Harrison S, Stankoff B, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 2005 ; 25 : 1459–1469. [CrossRef] [PubMed] [Google Scholar]
- Van Doorn R, Lopes Pinheiro MA, Kooij G, et al. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier. J Neuroinflammation 2012 ; 9 : 133. [CrossRef] [PubMed] [Google Scholar]
- Graler MH, Goetzl EJ. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 2004 ; 18 : 551–553. [CrossRef] [PubMed] [Google Scholar]
- Oo ML, Thangada S, Wu MT, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 2007 ; 282 : 9082–9089. [CrossRef] [PubMed] [Google Scholar]
- Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol Ther 2018 ; 185 : 34–49. [Google Scholar]
- Sanna MG, Vincent KP, Repetto E, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharmacol 2016 ; 89 : 176–186. [CrossRef] [PubMed] [Google Scholar]
- Kremer D, Gottle P, Flores-Rivera J, et al. Remyelination in multiple sclerosis: from concept to clinical trials. Curr Opin Neurol 2019 ; 32 : 378–384. [CrossRef] [PubMed] [Google Scholar]
- Sun L, Telles E, Karl M, et al. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci Alliance 2018 ; 1 : e201800039. [CrossRef] [PubMed] [Google Scholar]
- Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005 ; 8 : 745–751. [CrossRef] [PubMed] [Google Scholar]
- Cadavid D, Balcer L, Galetta S, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017 ; 16 : 189–199. [CrossRef] [PubMed] [Google Scholar]
- Cadavid D, Mellion M, Hupperts R, et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2019 ; 18 : 845–856. [CrossRef] [PubMed] [Google Scholar]
- Green AJ, Gelfand JM, Cree BA, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017 ; 390 : 2481–2489. [CrossRef] [PubMed] [Google Scholar]
- Bordet R, Camu W, De Seze J, et al. Mechanism of action of s1p receptor modulators in multiple sclerosis: the double requirement. Rev Neurol (Paris) 2019; Nov 19. pii: S0035–3787(18)30499–5. [Google Scholar]
- Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation 2011 ; 8 : 76. [CrossRef] [PubMed] [Google Scholar]
- Szepanowski F, Derksen A, Steiner I, et al. Fingolimod promotes peripheral nerve regeneration via modulation of lysophospholipid signaling. J Neuroinflammation 2016 ; 13 : 143. [CrossRef] [PubMed] [Google Scholar]
- Kim HJ, Miron VE, Dukala D, et al. Neurobiological effects of sphingosine 1-phosphate receptor modulation in the cuprizone model. FASEB J 2011 ; 25 : 1509–1518. [CrossRef] [PubMed] [Google Scholar]
- Gentile A, Musella A, Bullitta S, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016 ; 13 : 207. [CrossRef] [PubMed] [Google Scholar]
- Sedel F, Papeix C, Bellanger A, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015 ; 4 : 159–169. [CrossRef] [PubMed] [Google Scholar]
- Cuascut FX, Hutton GJ. Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 2019; 7. [Google Scholar]
- Burt RK, Balabanov R, Burman J, et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. Jama 2019 ; 321 : 165–174. [CrossRef] [PubMed] [Google Scholar]
- Kvistad SAS, Lehmann AK, Trovik LH, et al. Safety and efficacy of autologous hematopoietic stem cell transplantation for multiple sclerosis in Norway. Mult Scler 2019 ; 1352458519893926 : [Google Scholar]
- Muraro PA, Pasquini M, Atkins HL, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol 2017 ; 74 : 459–469. [Google Scholar]
- Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 2019 ; 235 : 116830. [CrossRef] [PubMed] [Google Scholar]
- Uccelli A, Laroni A, Brundin L, et al. Mesenchymal stem cells for multiple sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials 2019 ; 20 : 263. [PubMed] [Google Scholar]
- Shroff G.. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning 2018 ; 11 : 1–11. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.