Open Access
Issue
Med Sci (Paris)
Volume 36, Number 3, Mars 2020
Page(s) 235 - 242
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020023
Published online 31 March 2020
  1. Hietakangas V, Cohen SM. Regulation of tissue growth through nutrient sensing. Annu Rev Genet 2009 ; 43 : 389–410. [CrossRef] [PubMed] [Google Scholar]
  2. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet 2013 ; 14 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  3. Happle R.. The categories of cutaneous mosaicism: a proposed classification. Am J Med Genet A 2016 ; 170 : 452–459. [Google Scholar]
  4. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988 ; 332 : 644. [Google Scholar]
  5. Viaud J, Payrastre B. Les phosphoinositides : ces lipides qui coordonnent la dynamique cellulaire. Med Sci (Paris) 2015 ; 31 : 996–1005. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Orloff MS, He X, Peterson C, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet 2013 ; 92 : 76–80. [Google Scholar]
  7. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A 2014; 164A : 1713–33. [Google Scholar]
  8. Hare LM, Schwarz Q, Wiszniak S, et al. Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. Dev Biol 2015 ; 404 : 14–26. [CrossRef] [PubMed] [Google Scholar]
  9. Castillo SD, Tzouanacou E, Zaw-Thin M, et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med 2016; 8 : 332ra43. [CrossRef] [PubMed] [Google Scholar]
  10. Castel P, Carmona FJ, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med 2016; 8 : 332ra42. [CrossRef] [PubMed] [Google Scholar]
  11. di Blasio L, Puliafito A, Gagliardi PA, et al. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations. Cell Death Dis 2018; 9. [Google Scholar]
  12. Roy A, Skibo J, Kalume F, et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife 2015 ; 4 : e12703. [CrossRef] [PubMed] [Google Scholar]
  13. Kinross KM, Montgomery KG, Mangiafico SP, et al. Ubiquitous expression of the Pik3ca H1047R mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. FASEB J 2015 ; 29 : 1426–1434. [CrossRef] [PubMed] [Google Scholar]
  14. Venot Q, Blanc T, Rabia SH, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 2018 ; 558 : 540–546. [Google Scholar]
  15. Jenkins D, McCuaig C, Drolet BA, et al. Tuberous sclerosis complex associated with vascular anomalies or overgrowth. Pediatr Dermatol 2016 ; 33 : 536–542. [CrossRef] [PubMed] [Google Scholar]
  16. Fukai A, Kawamura N, Saito T, et al. Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum 2010 ; 62 : 826–836. [CrossRef] [PubMed] [Google Scholar]
  17. Segrelles C, Lu J, Hammann B, et al. Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis. Cancer Res 2007 ; 67 : 10879–10888. [Google Scholar]
  18. Lindhurst MJ, Brinster LR, Kondolf HC, et al. A mouse model of Proteus syndrome. Hum Mol Genet 2019 ; 28 : 2920–2936. [CrossRef] [PubMed] [Google Scholar]
  19. Rivière JB, Mirzaa GM, O’Roak BJ, et al. Finding of rare disease genes (FORGE) Canada consortium. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012 ; 44 : 934–940. [Google Scholar]
  20. Mirzaa G, Parry DA, Fry AE, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 2014 ; 46 : 510–515. [Google Scholar]
  21. Terrone G, Voisin N, Abdullah Alfaiz A, et al. De novo PIK3R2 variant causes polymicrogyria, corpus callosum hyperplasia and focal cortical dysplasia. Eur J Hum Genet 2016 ; 24 : 1359–1362. [Google Scholar]
  22. Kida A, Kakihana K, Kotani S, et al. Glycogen synthase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007 ; 26 : 6630–6640. [Google Scholar]
  23. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010 ; 18 : 8–14. [Google Scholar]
  24. Sun FL, Dean WL, Kelsey G, et al. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997 ; 389 : 809. [Google Scholar]
  25. Yan Y, Frisén J, Lee MH, et al. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997 ; 11 : 973–983. [CrossRef] [PubMed] [Google Scholar]
  26. Takahashi K, Nakayama K, Nakayama K. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J Biochem (Tokyo) 2000 ; 127 : 73–83. [CrossRef] [Google Scholar]
  27. Kanayama N, Takahashi K, Matsuura T, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 2002 ; 8 : 1129–1135. [Google Scholar]
  28. Tunster SJ, Van de Pette M, John RM. Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 2011 ; 4 : 814–821. [Google Scholar]
  29. Weber PF. Angioma formation in connection with hypertrophy of limbs and hemihypertrophy. Br J Derm 1907 ; 19 : 231–235. [Google Scholar]
  30. Revencu N, Boon LM, Mulliken JB, et al. Parkes-Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008 ; 29 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  31. Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev Rep 2013 ; 9 : 435–450. [Google Scholar]
  32. Bojakowski K, Janusz G, Grabowska I, et al. Rat model of Parkes-Weber syndrome. PLoS One 2015 ; 10 : e0133752. 2. [Google Scholar]
  33. Zegrocka-Stendel O, Bojakowski K, Dutkiewicz M, et al. New protoescigenin derivative for the treatment of Parkes Weber syndrome. PeerJ Inc 2015. https://peerj.com/preprints/1598/. [Google Scholar]
  34. Andelfinger G, Marquis C, Raboisson MJ, et al. Hypertrophic cardiomyopathy in Noonan syndrome treated by MEK-inhibition. J Am Coll Cardiol 2019 ; 73 : 2237–2239. [Google Scholar]
  35. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Pharmacodynamic study of Miransertib in individuals with Proteus syndrome. Am J Hum Genet 2019 ; 104 : 484–491. [Google Scholar]
  36. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Marsh DJ, Trahair TN, Martin JL, et al. Rapamycin treatment for a child with germline PTEN mutation. Nat Clin Pract Oncol 2008 ; 5 : 357–361. [Google Scholar]
  38. Schmid GL, Kässner F, Uhlig HH, et al. Sirolimus treatment of severe PTEN hamartoma tumor syndrome: case report and in vitro studies. Pediatr Res 2014 ; 75 : 527–534. [CrossRef] [PubMed] [Google Scholar]
  39. Seront E, Limaye N, Boon LM, Vikkula M. La rapamycine ouvre l’ère des thérapies ciblées dans les malformations veineuses. Med Sci (Paris) 2016 ; 32 : 574–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Parker VER, Keppler-Noreuil KM, Faivre L, et al. PROMISE working group. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet Med 2019 ; 21 : 1189–1198. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.