Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 3, Mars 2020
Page(s) 235 - 242
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020023
Publié en ligne 31 mars 2020
  1. Hietakangas V, Cohen SM. Regulation of tissue growth through nutrient sensing. Annu Rev Genet 2009 ; 43 : 389–410. [CrossRef] [PubMed] [Google Scholar]
  2. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet 2013 ; 14 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  3. Happle R.. The categories of cutaneous mosaicism: a proposed classification. Am J Med Genet A 2016 ; 170 : 452–459. [Google Scholar]
  4. Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988 ; 332 : 644. [Google Scholar]
  5. Viaud J, Payrastre B. Les phosphoinositides : ces lipides qui coordonnent la dynamique cellulaire. Med Sci (Paris) 2015 ; 31 : 996–1005. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Orloff MS, He X, Peterson C, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet 2013 ; 92 : 76–80. [Google Scholar]
  7. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. Am J Med Genet A 2014; 164A : 1713–33. [PubMed] [Google Scholar]
  8. Hare LM, Schwarz Q, Wiszniak S, et al. Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. Dev Biol 2015 ; 404 : 14–26. [CrossRef] [PubMed] [Google Scholar]
  9. Castillo SD, Tzouanacou E, Zaw-Thin M, et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med 2016; 8 : 332ra43. [CrossRef] [PubMed] [Google Scholar]
  10. Castel P, Carmona FJ, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med 2016; 8 : 332ra42. [CrossRef] [PubMed] [Google Scholar]
  11. di Blasio L, Puliafito A, Gagliardi PA, et al. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations. Cell Death Dis 2018; 9. [Google Scholar]
  12. Roy A, Skibo J, Kalume F, et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife 2015 ; 4 : e12703. [CrossRef] [PubMed] [Google Scholar]
  13. Kinross KM, Montgomery KG, Mangiafico SP, et al. Ubiquitous expression of the Pik3ca H1047R mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. FASEB J 2015 ; 29 : 1426–1434. [CrossRef] [PubMed] [Google Scholar]
  14. Venot Q, Blanc T, Rabia SH, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 2018 ; 558 : 540–546. [Google Scholar]
  15. Jenkins D, McCuaig C, Drolet BA, et al. Tuberous sclerosis complex associated with vascular anomalies or overgrowth. Pediatr Dermatol 2016 ; 33 : 536–542. [CrossRef] [PubMed] [Google Scholar]
  16. Fukai A, Kawamura N, Saito T, et al. Akt1 in murine chondrocytes controls cartilage calcification during endochondral ossification under physiologic and pathologic conditions. Arthritis Rheum 2010 ; 62 : 826–836. [CrossRef] [PubMed] [Google Scholar]
  17. Segrelles C, Lu J, Hammann B, et al. Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis. Cancer Res 2007 ; 67 : 10879–10888. [Google Scholar]
  18. Lindhurst MJ, Brinster LR, Kondolf HC, et al. A mouse model of Proteus syndrome. Hum Mol Genet 2019 ; 28 : 2920–2936. [CrossRef] [PubMed] [Google Scholar]
  19. Rivière JB, Mirzaa GM, O’Roak BJ, et al. Finding of rare disease genes (FORGE) Canada consortium. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012 ; 44 : 934–940. [Google Scholar]
  20. Mirzaa G, Parry DA, Fry AE, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 2014 ; 46 : 510–515. [Google Scholar]
  21. Terrone G, Voisin N, Abdullah Alfaiz A, et al. De novo PIK3R2 variant causes polymicrogyria, corpus callosum hyperplasia and focal cortical dysplasia. Eur J Hum Genet 2016 ; 24 : 1359–1362. [Google Scholar]
  22. Kida A, Kakihana K, Kotani S, et al. Glycogen synthase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007 ; 26 : 6630–6640. [Google Scholar]
  23. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010 ; 18 : 8–14. [Google Scholar]
  24. Sun FL, Dean WL, Kelsey G, et al. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997 ; 389 : 809. [Google Scholar]
  25. Yan Y, Frisén J, Lee MH, et al. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997 ; 11 : 973–983. [CrossRef] [PubMed] [Google Scholar]
  26. Takahashi K, Nakayama K, Nakayama K. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J Biochem (Tokyo) 2000 ; 127 : 73–83. [CrossRef] [Google Scholar]
  27. Kanayama N, Takahashi K, Matsuura T, et al. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 2002 ; 8 : 1129–1135. [Google Scholar]
  28. Tunster SJ, Van de Pette M, John RM. Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 2011 ; 4 : 814–821. [Google Scholar]
  29. Weber PF. Angioma formation in connection with hypertrophy of limbs and hemihypertrophy. Br J Derm 1907 ; 19 : 231–235. [Google Scholar]
  30. Revencu N, Boon LM, Mulliken JB, et al. Parkes-Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008 ; 29 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  31. Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev Rep 2013 ; 9 : 435–450. [PubMed] [Google Scholar]
  32. Bojakowski K, Janusz G, Grabowska I, et al. Rat model of Parkes-Weber syndrome. PLoS One 2015 ; 10 : e0133752. 2. [Google Scholar]
  33. Zegrocka-Stendel O, Bojakowski K, Dutkiewicz M, et al. New protoescigenin derivative for the treatment of Parkes Weber syndrome. PeerJ Inc 2015. https://peerj.com/preprints/1598/. [Google Scholar]
  34. Andelfinger G, Marquis C, Raboisson MJ, et al. Hypertrophic cardiomyopathy in Noonan syndrome treated by MEK-inhibition. J Am Coll Cardiol 2019 ; 73 : 2237–2239. [PubMed] [Google Scholar]
  35. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Pharmacodynamic study of Miransertib in individuals with Proteus syndrome. Am J Hum Genet 2019 ; 104 : 484–491. [Google Scholar]
  36. Pallet N, Beaune P, Thervet E, et al. Inhibiteurs de mTOR : des antiprolifératifs pléiotropiques. Med Sci (Paris) 2006 ; 22 : 947–952. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Marsh DJ, Trahair TN, Martin JL, et al. Rapamycin treatment for a child with germline PTEN mutation. Nat Clin Pract Oncol 2008 ; 5 : 357–361. [Google Scholar]
  38. Schmid GL, Kässner F, Uhlig HH, et al. Sirolimus treatment of severe PTEN hamartoma tumor syndrome: case report and in vitro studies. Pediatr Res 2014 ; 75 : 527–534. [CrossRef] [PubMed] [Google Scholar]
  39. Seront E, Limaye N, Boon LM, Vikkula M. La rapamycine ouvre l’ère des thérapies ciblées dans les malformations veineuses. Med Sci (Paris) 2016 ; 32 : 574–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Parker VER, Keppler-Noreuil KM, Faivre L, et al. PROMISE working group. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. Genet Med 2019 ; 21 : 1189–1198. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.