Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 3, Mars 2020
|
|
---|---|---|
Page(s) | 253 - 260 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020022 | |
Publié en ligne | 31 mars 2020 |
- Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002 ; 3 : 991–998. [CrossRef] [PubMed] [Google Scholar]
- Kanno Y, Vahedi G, Hirahara K, et al. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 2012 ; 30 : 707–731. [CrossRef] [PubMed] [Google Scholar]
- O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010 ; 327 : 1098–1102. [Google Scholar]
- Curtsinger JM, Schmidt CS, Mondino A, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999 ; 162 : 3256–3262. [PubMed] [Google Scholar]
- Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992 ; 356 : 607–609. [Google Scholar]
- O’Shea JJ, Lahesmaa R, Vahedi G, et al. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 2011 ; 11 : 239–250. [Google Scholar]
- Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol 2009 ; 9 : 91–105. [Google Scholar]
- Allan RS, Zueva E, Cammas F, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 2012 ; 487 : 249–253. [Google Scholar]
- Adoue V, Binet B, Malbec A, et al. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity 2019 ; 50 : 629–644. [CrossRef] [PubMed] [Google Scholar]
- Bird JJ, Brown DR, Mullen AC, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 1998 ; 9 : 229–237. [CrossRef] [PubMed] [Google Scholar]
- Bertin A, Mangenot S. Structure et dynamique de la particule coeur de nucléosome. Med Sci (Paris) 2008 ; 24 : 715–719. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Grogan JL, Mohrs M, Harmon B, et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 2001 ; 14 : 205–215. [Google Scholar]
- Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006 ; 31 : 89–97. [CrossRef] [PubMed] [Google Scholar]
- Lauberth SM, Nakayama T, Wu X, et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 2013 ; 152 : 1021–1036. [CrossRef] [PubMed] [Google Scholar]
- Mozzetta C, Boyarchuk E, Pontis J, Ait-Si-Ali S. Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 2015 ; 16 : 499–513. [CrossRef] [PubMed] [Google Scholar]
- Lachner M, O’Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001 ; 410 : 116–120. [Google Scholar]
- Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001 ; 107 : 323–337. [CrossRef] [PubMed] [Google Scholar]
- Bilodeau S, Kagey MH, Frampton GM, et al. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 2009 ; 23 : 2484–2489. [CrossRef] [PubMed] [Google Scholar]
- Liu J, Magri L, Zhang F, et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 2015 ; 35 : 352–365. [CrossRef] [PubMed] [Google Scholar]
- Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell 2005 ; 19 : 381–391. [CrossRef] [PubMed] [Google Scholar]
- Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 2011 ; 18 : 337–344. [CrossRef] [PubMed] [Google Scholar]
- Zueva E, Allan RS, Cammas F, et al. Contrôle épigénétique de la stabilité phénotypique et fonctionnelle des lymphocytes Th2 par la voie Suv39h1/HP1a. Med Sci (Paris) 2012 ; 28 : 1032–1034. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pace L, Goudot C, Zueva E, et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 2018 ; 359 : 177–186. [Google Scholar]
- Loyola A, Tagami H, Bonaldi T, et al. The HP1α–CAF1–SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009 ; 10 : 769–775. [PubMed] [Google Scholar]
- Schultz DC, Ayyanathan K, Negorev D, et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002 ; 16 : 919–932. [CrossRef] [PubMed] [Google Scholar]
- Xiao X, Shi X, Fan Y, et al. The costimulatory receptor OX40 inhibits interleukin-17 expression through activation of repressive chromatin remodeling pathways. Immunity 2016 ; 44 : 1271–1283. [CrossRef] [PubMed] [Google Scholar]
- Bulut-Karslioglu A, De La Rosa-Velázquez IA, Ramirez F, et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 2014 ; 55 : 277–290. [CrossRef] [PubMed] [Google Scholar]
- Karimi MM, Goyal P, Maksakova IA, et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 2011 ; 8 : 676–687. [Google Scholar]
- Rebollo R, Karimi MM, Bilenky M, et al. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLOS Genet 2011 ; 7 : e1002301. [PubMed] [Google Scholar]
- Thompson PJ, Macfarlan TS, Lorincz MC. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell 2016 ; 62 : 766–776. [CrossRef] [PubMed] [Google Scholar]
- Rowe HM, Kapopoulou A, Corsinotti A, et al. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 2013 ; 23 : 452–461. [CrossRef] [PubMed] [Google Scholar]
- Ecco G, Cassano M, Kauzlaric A, et al. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev Cell 2016 ; 36 : 611–623. [CrossRef] [PubMed] [Google Scholar]
- Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2017 ; 18 : 71–86. [CrossRef] [PubMed] [Google Scholar]
- Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 2016 ; 351 : 1083–1087. [Google Scholar]
- Friedli M, Trono D. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 2015 ; 31 : 429–451. [PubMed] [Google Scholar]
- Peaston AE, Evsikov AV, Graber JH, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004 ; 7 : 597–606. [CrossRef] [PubMed] [Google Scholar]
- Sundaram V, Cheng Y, Ma Z, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 2014 ; 24 : 1963–1976. [CrossRef] [PubMed] [Google Scholar]
- Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012 ; 12 : 298–306. [Google Scholar]
- Chikuma S, Suita N, Okazaki IM, et al. TRIM28 prevents autoinflammatory T cell development in vivo. Nat Immunol 2012 ; 13 : 596–603. [CrossRef] [PubMed] [Google Scholar]
- Liu B, Tahk S, Yee KM, et al. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 2010 ; 330 : 521–525. [Google Scholar]
- Martin FJ, Xu Y, Lohmann F, et al. KMT1E-mediated chromatin modifications at the FcgRIIb promoter regulate thymocyte development. Genes Immun 2015 ; 16 : 162–169. [CrossRef] [PubMed] [Google Scholar]
- Santoni de Sio FR, Barde I, Offner S, et al. KAP1 regulates gene networks controlling T-cell development and responsiveness. FASEB J 2012 ; 26 : 4561–4575. [CrossRef] [PubMed] [Google Scholar]
- Takikita S, Muo R, Takai T, et al. A histone methyltransferase ESET is critical for T cell development. J Immunol 2016 ; 197 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
- Taniuchi I, Sunshine MJ, Festenstein R, Littman DR. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Mol Cell 2002 ; 10 : 1083–1096. [CrossRef] [PubMed] [Google Scholar]
- Zhou ZF, Yu J, Chang M, et al. TRIM28 mediates chromatin modifications at the TCR enhancer and regulates the development of T and natural killer T cells. Proc Natl Acad Sci USA 2012 ; 109 : 20083–20089. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.