Organoïdes
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 1, Janvier 2020
Organoïdes
Page(s) 57 - 62
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019259
Published online 04 February 2020
  1. Rahib L Smith BD Aizenberg R et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014 ; 74 : 2913–2921. [Google Scholar]
  2. Ma J Jemal A The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend?. Future Oncol 2013 ; 9 : 917–919. [Google Scholar]
  3. Hidalgo M. Pancreatic cancer. N Engl J Med 2010 ; 362 : 1605–1617. [Google Scholar]
  4. Olive KP Jacobetz MA Davidson CJ et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009 ; 324 : 1457–1461. [Google Scholar]
  5. Maitra A Hruban RH Pancreatic cancer. Annu Rev Pathol 2008 ; 3 : 157–188. [CrossRef] [PubMed] [Google Scholar]
  6. Bailey P Chang DK Nones K et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016 ; 531 : 47–52. [Google Scholar]
  7. Waddell N Pajic M Patch AM et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015 ; 518 : 495–501. [Google Scholar]
  8. Lomberk G Dusetti N Iovanna J Urrutia R Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun 2019 ; 10 : 3875. [PubMed] [Google Scholar]
  9. Nicolle R Blum Y Marisa L et al. Des approches multi-omiques dévoilent de nouvelles cibles thérapeutiques pour le traitement du cancer du pancréas. Med Sci (Paris) 2018 ; 34 : 379–382. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Baker LA Tiriac H Clevers H Tuveson DA Modeling pancreatic cancer with organoids. Trends Cancer 2016 ; 2 : 176–190. [CrossRef] [PubMed] [Google Scholar]
  11. Githens S, 3rd Holmquist DR Whelan JF Ruby JR Ducts of the rat pancreas in a agarose matrix culture. In vitro 1980 ; 16 : 797–808. [CrossRef] [PubMed] [Google Scholar]
  12. van Geer MA Kuhlmann KF Bakker CT et al. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices. World J Gastroenterol 2009 ; 15 : 1359–1366. [CrossRef] [PubMed] [Google Scholar]
  13. Agbunag C Lee KE Buontempo S Bar-Sagi D Pancreatic duct epithelial cell isolation and cultivation in two-dimensional and three-dimensional culture systems. Meth Enzymol 2006 ; 407 : 703–710. [Google Scholar]
  14. Schreiber FS Deramaudt TB Brunner TB et al. Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 2004 ; 127 : 250–260. [CrossRef] [PubMed] [Google Scholar]
  15. Matsuda Y Ishiwata T Kawamoto Y et al. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol 2010 ; 43 : 211–217. [CrossRef] [PubMed] [Google Scholar]
  16. Longati P Jia X Eimer J et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 2013 ; 13 : 95. [CrossRef] [PubMed] [Google Scholar]
  17. Blokzijl F de Ligt J Jager M et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016 ; 538 : 260–264. [Google Scholar]
  18. Huch M Gehart H van Boxtel R et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015 ; 160 : 299–312. [PubMed] [Google Scholar]
  19. Sato T Vries RG Snippert HJ et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009 ; 459 : 262–265. [Google Scholar]
  20. Sato T Clevers H Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 2013 ; 340 : 1190–1194. [Google Scholar]
  21. Sato T Stange DE Ferrante M et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011 ; 141 : 1762–1772. [CrossRef] [PubMed] [Google Scholar]
  22. Huch M Boj SF Clevers H Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regen Med 2013 ; 8 : 385–387. [CrossRef] [PubMed] [Google Scholar]
  23. Barker N Huch M Kujala P et al. Lgr5+(ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010 ; 6 : 25–36. [Google Scholar]
  24. Gao D Vela I Sboner A et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014 ; 159 : 176–187. [PubMed] [Google Scholar]
  25. Huch M Bonfanti P Boj SF et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 2013 ; 32 : 2708–2721. [PubMed] [Google Scholar]
  26. Boj SF Hwang CI Baker LA et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015 ; 160 : 324–338. [PubMed] [Google Scholar]
  27. Lee J Snyder ER Liu Y et al. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat Commun 2017 ; 8 : 14686. [PubMed] [Google Scholar]
  28. Bian B Juiz NA Gayet O et al. Pancreatic cancer organoids for determining sensitivity to bromodomain and extra-terminal inhibitors (BETi). Front Oncol 2019 ; 9 : 475. [CrossRef] [PubMed] [Google Scholar]
  29. Iovanna J Dusetti N Speeding towards individualized treatment for pancreatic cancer by taking an alternative road. Cancer Lett 2017 ; 410 : 63–67. [Google Scholar]
  30. Bian B Bigonnet M Gayet O et al. Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts. EMBO Mol Med 2017 ; 9 : 482–497. [CrossRef] [PubMed] [Google Scholar]
  31. Nicolle R Blum Y Marisa L et al. Pancreatic adenocarcinoma therapeutic targets revealed by tumor-stroma cross-talk analyses in patient-derived xenografts. Cell rep 2017 ; 21 : 2458–2470. [CrossRef] [PubMed] [Google Scholar]
  32. Lomberk G Blum Y Nicolle R et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun 2018 ; 9 : 1978. [PubMed] [Google Scholar]
  33. Duconseil P Gilabert M Gayet O et al. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma. Am J Pathol 2015 ; 185 : 1022–1032. [CrossRef] [PubMed] [Google Scholar]
  34. Lowery MA Kelsen DP Capanu M et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer 2018 ; 89 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  35. Lan W Bian B Xia Y et al. E2F signature is predictive for the pancreatic adenocarcinoma clinical outcome and sensitivity to E2F inhibitors, but not for the response to cytotoxic-based treatments. Sci Rep 2018 ; 8 : 8330. [CrossRef] [PubMed] [Google Scholar]
  36. Barraud M Garnier J Loncle C et al. A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT. Oncotarget 2016 ; 7 : 53783–53796. [PubMed] [Google Scholar]
  37. Gayet O Loncle C Duconseil P et al. A subgroup of pancreatic adenocarcinoma is sensitive to the 5-aza-dC DNA methyltransferase inhibitor. Oncotarget 2015 ; 6 : 746–754. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.