Open Access
Issue
Med Sci (Paris)
Volume 36, Number 1, Janvier 2020
Page(s) 50 - 56
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019269
Published online 04 February 2020
  1. Chelbi-Alix MK Wietzerbin J Interferon, a growing cytokine family: 50 years of interferon research. Biochimie 2007 ; 89 : 713–718. [CrossRef] [PubMed] [Google Scholar]
  2. Chawla-Sarkar M Lindner DJ Liu YF et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003 ; 8 : 237–249. [CrossRef] [PubMed] [Google Scholar]
  3. Crowder C Dahle Ø Davis RE et al. PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 2005 ; 105 : 1280–1287. [Google Scholar]
  4. Jensen K Shiels C Freemont PS PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001 ; 20 : 7223–7233. [Google Scholar]
  5. Nisole S Maroui MA Mascle XH et al. Differential Roles of PML Isoforms. Front Oncol 2013 ; 3 : 125. [CrossRef] [PubMed] [Google Scholar]
  6. El-Asmi F Maroui MA Dutrieux J et al. Implication of PMLIV in Both Intrinsic and Innate Immunity. PLoS Pathog. 2014 ; 10 : [Google Scholar]
  7. Maroui MA Pampin M Chelbi-Alix MK Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol 2011 ; 85 : 13164–13173. [CrossRef] [PubMed] [Google Scholar]
  8. Fogal V Gostissa M Sandy P et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000 ; 19 : 6185–6195. [PubMed] [Google Scholar]
  9. Maroui MA El-Asmi F Dutrieux J et al. Implication des corps nucléaires PML dans l’immunité intrinsèque et innée. Med Sci (Paris) 2014 ; 30 : 765–771. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Stadler M Chelbi-Alix MK Koken MH et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995 ; 11 : 2565–2573. [Google Scholar]
  11. Chelbi-Alix MK Pelicano L Quignon F et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 1995 ; 9 : 2027–2033. [PubMed] [Google Scholar]
  12. Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene 2008; 27 : 6299–312. [Google Scholar]
  13. Krieghoff-Henning E Hofmann TG Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 2008 ; 1783 : 2185–2194. [CrossRef] [PubMed] [Google Scholar]
  14. Jin G Wang Y-J Lin H-K Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013 ; 3 : 147. [PubMed] [Google Scholar]
  15. Martin N Dejean A Bischof O TBX2, un nouvel acteur dans la sénescence cellulaire induite par PML. Med Sci (Paris) 2012 ; 28 : 248–250. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Regad T Chelbi-Alix MK Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001 ; 20 : 7274–7286. [Google Scholar]
  17. Everett RD Chelbi-Alix MK PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007 ; 89 : 819–830. [CrossRef] [PubMed] [Google Scholar]
  18. Geoffroy MC Chelbi-Alix MK Role of promyelocytic leukemia protein in host antiviral defense. J Interf Cytokine Res 2011 ; 31 : 145–158. [CrossRef] [PubMed] [Google Scholar]
  19. Porta C Hadj-Slimane R Nejmeddine M et al. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 2005 ; 24 : 605–615. [Google Scholar]
  20. El McHichi B Regad T Maroui MA et al. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010 ; 84 : 11634–11645. [CrossRef] [PubMed] [Google Scholar]
  21. El-Asmi F El-Mchichi B Maroui MA et al. TGF-β induces PML SUMOylation, degradation and PML nuclear body disruption. Cytokine 2019 ; 120 : 264–272. [Google Scholar]
  22. Zhu J Koken MH Quignon F et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997 ; 94 : 3978–3983. [CrossRef] [Google Scholar]
  23. Pampin M Simonin Y Blondel B et al. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol 2006 ; 80 : 8582–8592. [CrossRef] [PubMed] [Google Scholar]
  24. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012 ; 13 : 616–630. [CrossRef] [PubMed] [Google Scholar]
  25. Siegel PM Massagué J Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003 ; 3 : 807–820. [Google Scholar]
  26. Inman GJ Allday MJ Apoptosis induced by TGF-βeta 1 in Burkitt’s lymphoma cells is caspase 8 dependent but is death receptor independent. J Immunol 2000 ; 165 : 2500–2510. [CrossRef] [PubMed] [Google Scholar]
  27. Schrantz N Bourgeade MF Mouhamad S et al. p38-mediated regulation of an Fas-associated death domain protein-independent pathway leading to caspase-8 activation during TGFbeta-induced apoptosis in human Burkitt lymphoma B cells BL41. Mol Biol Cell 2001 ; 12 : 3139–3151. [CrossRef] [PubMed] [Google Scholar]
  28. Besnault-Mascard L Leprince C Auffredou MT et al. Caspase-8 sumoylation is associated with nuclear localization. Oncogene 2005 ; 24 : 3268–3273. [Google Scholar]
  29. Wang ZG Ruggero D Ronchetti S et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998 ; 20 : 266–272. [Google Scholar]
  30. Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-βeta signalling. Nature 2004; 431 : 205–11. [Google Scholar]
  31. Hayashi H Abdollah S Qiu Y et al. The MAD-Related Protein Smad7 Associates with the TGFβ Receptor and Functions as an Antagonist of TGFβ Signaling. Cell 1997 ; 89 : 1165–1173. [PubMed] [Google Scholar]
  32. Nakao A Afrakhte M Morén A et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-βeta signalling. Nature 1997 ; 389 : 631–635. [Google Scholar]
  33. Seo SR Ferrand N Faresse N et al. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-βeta signaling. Mol Cell 2006 ; 23 : 547–559. [CrossRef] [PubMed] [Google Scholar]
  34. Ettahar A Ferrigno O Zhang M-Z et al. Identification of PHRF1 as a tumor suppressor that promotes the TGF-β cytostatic program through selective release of TGIF-driven PML inactivation. Cell Rep 2013 ; 4 : 530–541. [CrossRef] [PubMed] [Google Scholar]
  35. Faresse N Colland F Ferrand N et al. Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-βeta signalling. EMBO J 2008 ; 27 : 1804–1815. [PubMed] [Google Scholar]
  36. Seo SR Lallemand F Ferrand N et al. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 2004 ; 23 : 3780–3792. [PubMed] [Google Scholar]
  37. Lin X Liang M Feng XH Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000 ; 275 : 36818–36822. [PubMed] [Google Scholar]
  38. Ebisawa T Fukuchi M Murakami G et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001 ; 276 : 12477–12480. [PubMed] [Google Scholar]
  39. Kavsak P Rasmussen RK Causing CG et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000 ; 6 : 1365–1375. [CrossRef] [PubMed] [Google Scholar]
  40. Reichelt M Wang L Sommer M et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011 ; 7 : e1001266. [CrossRef] [PubMed] [Google Scholar]
  41. Guo A Salomoni P Luo J et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000 ; 2 : 730–736. [CrossRef] [PubMed] [Google Scholar]
  42. Pearson M Carbone R Sebastiani C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000 ; 406 : 207–210. [Google Scholar]
  43. Zhu J Lallemand-Breitenbach V de The H Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene 2001 ; 20 : 7257–7265. [Google Scholar]
  44. Tang J Xie W Yang X Association of caspase-2 with the promyelocytic leukemia protein nuclear bodies. Cancer Biol Ther 2005 ; 4 : 645–649. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.