Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 1, Janvier 2020
Page(s) 50 - 56
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019269
Publié en ligne 4 février 2020
  1. Chelbi-Alix MK Wietzerbin J Interferon, a growing cytokine family: 50 years of interferon research. Biochimie 2007 ; 89 : 713–718. [CrossRef] [PubMed] [Google Scholar]
  2. Chawla-Sarkar M Lindner DJ Liu YF et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003 ; 8 : 237–249. [CrossRef] [PubMed] [Google Scholar]
  3. Crowder C Dahle Ø Davis RE et al. PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 2005 ; 105 : 1280–1287. [Google Scholar]
  4. Jensen K Shiels C Freemont PS PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001 ; 20 : 7223–7233. [Google Scholar]
  5. Nisole S Maroui MA Mascle XH et al. Differential Roles of PML Isoforms. Front Oncol 2013 ; 3 : 125. [CrossRef] [PubMed] [Google Scholar]
  6. El-Asmi F Maroui MA Dutrieux J et al. Implication of PMLIV in Both Intrinsic and Innate Immunity. PLoS Pathog. 2014 ; 10 : [Google Scholar]
  7. Maroui MA Pampin M Chelbi-Alix MK Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol 2011 ; 85 : 13164–13173. [CrossRef] [PubMed] [Google Scholar]
  8. Fogal V Gostissa M Sandy P et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000 ; 19 : 6185–6195. [PubMed] [Google Scholar]
  9. Maroui MA El-Asmi F Dutrieux J et al. Implication des corps nucléaires PML dans l’immunité intrinsèque et innée. Med Sci (Paris) 2014 ; 30 : 765–771. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Stadler M Chelbi-Alix MK Koken MH et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995 ; 11 : 2565–2573. [Google Scholar]
  11. Chelbi-Alix MK Pelicano L Quignon F et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 1995 ; 9 : 2027–2033. [PubMed] [Google Scholar]
  12. Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene 2008; 27 : 6299–312. [Google Scholar]
  13. Krieghoff-Henning E Hofmann TG Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 2008 ; 1783 : 2185–2194. [CrossRef] [PubMed] [Google Scholar]
  14. Jin G Wang Y-J Lin H-K Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013 ; 3 : 147. [PubMed] [Google Scholar]
  15. Martin N Dejean A Bischof O TBX2, un nouvel acteur dans la sénescence cellulaire induite par PML. Med Sci (Paris) 2012 ; 28 : 248–250. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Regad T Chelbi-Alix MK Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001 ; 20 : 7274–7286. [Google Scholar]
  17. Everett RD Chelbi-Alix MK PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007 ; 89 : 819–830. [CrossRef] [PubMed] [Google Scholar]
  18. Geoffroy MC Chelbi-Alix MK Role of promyelocytic leukemia protein in host antiviral defense. J Interf Cytokine Res 2011 ; 31 : 145–158. [CrossRef] [PubMed] [Google Scholar]
  19. Porta C Hadj-Slimane R Nejmeddine M et al. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 2005 ; 24 : 605–615. [Google Scholar]
  20. El McHichi B Regad T Maroui MA et al. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010 ; 84 : 11634–11645. [CrossRef] [PubMed] [Google Scholar]
  21. El-Asmi F El-Mchichi B Maroui MA et al. TGF-β induces PML SUMOylation, degradation and PML nuclear body disruption. Cytokine 2019 ; 120 : 264–272. [Google Scholar]
  22. Zhu J Koken MH Quignon F et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997 ; 94 : 3978–3983. [CrossRef] [Google Scholar]
  23. Pampin M Simonin Y Blondel B et al. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol 2006 ; 80 : 8582–8592. [CrossRef] [PubMed] [Google Scholar]
  24. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012 ; 13 : 616–630. [CrossRef] [PubMed] [Google Scholar]
  25. Siegel PM Massagué J Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 2003 ; 3 : 807–820. [Google Scholar]
  26. Inman GJ Allday MJ Apoptosis induced by TGF-βeta 1 in Burkitt’s lymphoma cells is caspase 8 dependent but is death receptor independent. J Immunol 2000 ; 165 : 2500–2510. [CrossRef] [PubMed] [Google Scholar]
  27. Schrantz N Bourgeade MF Mouhamad S et al. p38-mediated regulation of an Fas-associated death domain protein-independent pathway leading to caspase-8 activation during TGFbeta-induced apoptosis in human Burkitt lymphoma B cells BL41. Mol Biol Cell 2001 ; 12 : 3139–3151. [CrossRef] [PubMed] [Google Scholar]
  28. Besnault-Mascard L Leprince C Auffredou MT et al. Caspase-8 sumoylation is associated with nuclear localization. Oncogene 2005 ; 24 : 3268–3273. [Google Scholar]
  29. Wang ZG Ruggero D Ronchetti S et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998 ; 20 : 266–272. [Google Scholar]
  30. Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-βeta signalling. Nature 2004; 431 : 205–11. [Google Scholar]
  31. Hayashi H Abdollah S Qiu Y et al. The MAD-Related Protein Smad7 Associates with the TGFβ Receptor and Functions as an Antagonist of TGFβ Signaling. Cell 1997 ; 89 : 1165–1173. [PubMed] [Google Scholar]
  32. Nakao A Afrakhte M Morén A et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-βeta signalling. Nature 1997 ; 389 : 631–635. [Google Scholar]
  33. Seo SR Ferrand N Faresse N et al. Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-βeta signaling. Mol Cell 2006 ; 23 : 547–559. [CrossRef] [PubMed] [Google Scholar]
  34. Ettahar A Ferrigno O Zhang M-Z et al. Identification of PHRF1 as a tumor suppressor that promotes the TGF-β cytostatic program through selective release of TGIF-driven PML inactivation. Cell Rep 2013 ; 4 : 530–541. [CrossRef] [PubMed] [Google Scholar]
  35. Faresse N Colland F Ferrand N et al. Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-βeta signalling. EMBO J 2008 ; 27 : 1804–1815. [PubMed] [Google Scholar]
  36. Seo SR Lallemand F Ferrand N et al. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 2004 ; 23 : 3780–3792. [PubMed] [Google Scholar]
  37. Lin X Liang M Feng XH Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 2000 ; 275 : 36818–36822. [PubMed] [Google Scholar]
  38. Ebisawa T Fukuchi M Murakami G et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001 ; 276 : 12477–12480. [PubMed] [Google Scholar]
  39. Kavsak P Rasmussen RK Causing CG et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000 ; 6 : 1365–1375. [CrossRef] [PubMed] [Google Scholar]
  40. Reichelt M Wang L Sommer M et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011 ; 7 : e1001266. [CrossRef] [PubMed] [Google Scholar]
  41. Guo A Salomoni P Luo J et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000 ; 2 : 730–736. [CrossRef] [PubMed] [Google Scholar]
  42. Pearson M Carbone R Sebastiani C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000 ; 406 : 207–210. [Google Scholar]
  43. Zhu J Lallemand-Breitenbach V de The H Pathways of retinoic acid- or arsenic trioxide-induced PML/RARalpha catabolism, role of oncogene degradation in disease remission. Oncogene 2001 ; 20 : 7257–7265. [Google Scholar]
  44. Tang J Xie W Yang X Association of caspase-2 with the promyelocytic leukemia protein nuclear bodies. Cancer Biol Ther 2005 ; 4 : 645–649. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.