Organoïdes
Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 1, Janvier 2020
Organoïdes
Page(s) 57 - 62
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019259
Publié en ligne 4 février 2020
  1. Rahib L Smith BD Aizenberg R et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014 ; 74 : 2913–2921. [Google Scholar]
  2. Ma J Jemal A The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend?. Future Oncol 2013 ; 9 : 917–919. [PubMed] [Google Scholar]
  3. Hidalgo M. Pancreatic cancer. N Engl J Med 2010 ; 362 : 1605–1617. [Google Scholar]
  4. Olive KP Jacobetz MA Davidson CJ et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009 ; 324 : 1457–1461. [Google Scholar]
  5. Maitra A Hruban RH Pancreatic cancer. Annu Rev Pathol 2008 ; 3 : 157–188. [CrossRef] [PubMed] [Google Scholar]
  6. Bailey P Chang DK Nones K et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016 ; 531 : 47–52. [Google Scholar]
  7. Waddell N Pajic M Patch AM et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015 ; 518 : 495–501. [Google Scholar]
  8. Lomberk G Dusetti N Iovanna J Urrutia R Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun 2019 ; 10 : 3875. [PubMed] [Google Scholar]
  9. Nicolle R Blum Y Marisa L et al. Des approches multi-omiques dévoilent de nouvelles cibles thérapeutiques pour le traitement du cancer du pancréas. Med Sci (Paris) 2018 ; 34 : 379–382. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Baker LA Tiriac H Clevers H Tuveson DA Modeling pancreatic cancer with organoids. Trends Cancer 2016 ; 2 : 176–190. [CrossRef] [PubMed] [Google Scholar]
  11. Githens S, 3rd Holmquist DR Whelan JF Ruby JR Ducts of the rat pancreas in a agarose matrix culture. In vitro 1980 ; 16 : 797–808. [CrossRef] [PubMed] [Google Scholar]
  12. van Geer MA Kuhlmann KF Bakker CT et al. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices. World J Gastroenterol 2009 ; 15 : 1359–1366. [CrossRef] [PubMed] [Google Scholar]
  13. Agbunag C Lee KE Buontempo S Bar-Sagi D Pancreatic duct epithelial cell isolation and cultivation in two-dimensional and three-dimensional culture systems. Meth Enzymol 2006 ; 407 : 703–710. [Google Scholar]
  14. Schreiber FS Deramaudt TB Brunner TB et al. Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology 2004 ; 127 : 250–260. [CrossRef] [PubMed] [Google Scholar]
  15. Matsuda Y Ishiwata T Kawamoto Y et al. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol 2010 ; 43 : 211–217. [CrossRef] [PubMed] [Google Scholar]
  16. Longati P Jia X Eimer J et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 2013 ; 13 : 95. [CrossRef] [PubMed] [Google Scholar]
  17. Blokzijl F de Ligt J Jager M et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016 ; 538 : 260–264. [Google Scholar]
  18. Huch M Gehart H van Boxtel R et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015 ; 160 : 299–312. [PubMed] [Google Scholar]
  19. Sato T Vries RG Snippert HJ et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009 ; 459 : 262–265. [Google Scholar]
  20. Sato T Clevers H Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 2013 ; 340 : 1190–1194. [Google Scholar]
  21. Sato T Stange DE Ferrante M et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011 ; 141 : 1762–1772. [CrossRef] [PubMed] [Google Scholar]
  22. Huch M Boj SF Clevers H Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regen Med 2013 ; 8 : 385–387. [CrossRef] [PubMed] [Google Scholar]
  23. Barker N Huch M Kujala P et al. Lgr5+(ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010 ; 6 : 25–36. [Google Scholar]
  24. Gao D Vela I Sboner A et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014 ; 159 : 176–187. [PubMed] [Google Scholar]
  25. Huch M Bonfanti P Boj SF et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 2013 ; 32 : 2708–2721. [PubMed] [Google Scholar]
  26. Boj SF Hwang CI Baker LA et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015 ; 160 : 324–338. [PubMed] [Google Scholar]
  27. Lee J Snyder ER Liu Y et al. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat Commun 2017 ; 8 : 14686. [PubMed] [Google Scholar]
  28. Bian B Juiz NA Gayet O et al. Pancreatic cancer organoids for determining sensitivity to bromodomain and extra-terminal inhibitors (BETi). Front Oncol 2019 ; 9 : 475. [CrossRef] [PubMed] [Google Scholar]
  29. Iovanna J Dusetti N Speeding towards individualized treatment for pancreatic cancer by taking an alternative road. Cancer Lett 2017 ; 410 : 63–67. [Google Scholar]
  30. Bian B Bigonnet M Gayet O et al. Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts. EMBO Mol Med 2017 ; 9 : 482–497. [CrossRef] [PubMed] [Google Scholar]
  31. Nicolle R Blum Y Marisa L et al. Pancreatic adenocarcinoma therapeutic targets revealed by tumor-stroma cross-talk analyses in patient-derived xenografts. Cell rep 2017 ; 21 : 2458–2470. [CrossRef] [PubMed] [Google Scholar]
  32. Lomberk G Blum Y Nicolle R et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun 2018 ; 9 : 1978. [PubMed] [Google Scholar]
  33. Duconseil P Gilabert M Gayet O et al. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma. Am J Pathol 2015 ; 185 : 1022–1032. [CrossRef] [PubMed] [Google Scholar]
  34. Lowery MA Kelsen DP Capanu M et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer 2018 ; 89 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  35. Lan W Bian B Xia Y et al. E2F signature is predictive for the pancreatic adenocarcinoma clinical outcome and sensitivity to E2F inhibitors, but not for the response to cytotoxic-based treatments. Sci Rep 2018 ; 8 : 8330. [CrossRef] [PubMed] [Google Scholar]
  36. Barraud M Garnier J Loncle C et al. A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT. Oncotarget 2016 ; 7 : 53783–53796. [PubMed] [Google Scholar]
  37. Gayet O Loncle C Duconseil P et al. A subgroup of pancreatic adenocarcinoma is sensitive to the 5-aza-dC DNA methyltransferase inhibitor. Oncotarget 2015 ; 6 : 746–754. [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.