Free Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1163 - 1170
Section Bioproduction
DOI https://doi.org/10.1051/medsci/2019231
Published online 06 January 2020
  1. Huang L, Biolsi S, Bales KR, Kuchibhotla U. Impact of variable domain glycosylation on antibody clearance: An LC/MS characterization. Anal Biochem 2006 ; 349: 197–207. [CrossRef] [PubMed] [Google Scholar]
  2. Mo J, Yan Q, So CK, et al. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry. Anal Chem 2016 ; 88: 9495–9502. [CrossRef] [PubMed] [Google Scholar]
  3. Wei Z, Feng J, Lin HY, et al. Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem 2007 ; 79: 2797–2805. [CrossRef] [PubMed] [Google Scholar]
  4. Dashivets T, Stracke J, Dengl S, et al. Oxidation in the complementarity-determining regions differentially influences the properties of therapeutic antibodies. mAbs 2016; 8: 1525–35. [CrossRef] [PubMed] [Google Scholar]
  5. Sydow JF, Lipsmeier F, Laraillet V, et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 2014 ; 9: e100736. [CrossRef] [PubMed] [Google Scholar]
  6. Lu X, Nobrega RP, Lynaugh H, et al. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. mAbs 2019; 11: 45–57. [CrossRef] [PubMed] [Google Scholar]
  7. Jefferis R.. Posttranslational modifications and the immunogenicity of biotherapeutics. J. Immunol Res 2016 ; 2016: 5358272. [CrossRef] [PubMed] [Google Scholar]
  8. Chennamsetty N, Voynov V, Kayser V, et al. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 2009 ; 106: 11937–11942. [CrossRef] [Google Scholar]
  9. Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013 ; 31: 612–620. [CrossRef] [PubMed] [Google Scholar]
  10. Dobson CL, Devine PW, Phillips JJ, et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 2016 ; 6: 38644. [CrossRef] [PubMed] [Google Scholar]
  11. Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res 2010 ; 27: 544–575. [CrossRef] [PubMed] [Google Scholar]
  12. Telikepalli SN, Kumru OS, Kalonia C, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci 2014 ; 103: 796–809. [CrossRef] [PubMed] [Google Scholar]
  13. van der Kant R, Karow-Zwick AR, van Durme J, et al. Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol 2017 ; 429: 1244–1261. [Google Scholar]
  14. Sule SV, Fernandez JE, Mecozzi VJ, et al. Assessing the impact of charge variants on stability and viscosity of a high concentration antibody formulation. J Pharm Sci 2017 ; 106: 3507–3514. [CrossRef] [PubMed] [Google Scholar]
  15. Tomar DS, Kumar S, Singh SK, et al. Molecular basis of high viscosity in concentrated antibody solutions: strategies for high concentration drug product development. mAbs 2016; 8: 216–28. [CrossRef] [PubMed] [Google Scholar]
  16. Sharma VK, Patapoff TW, Kabakoff B, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci USA 2014 ; 111: 18601–18606. [CrossRef] [Google Scholar]
  17. Chennamsetty N, Voynov V, Kayser V, et al. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B 2010 ; 114: 6614–6624. [CrossRef] [PubMed] [Google Scholar]
  18. Lauer TM, Agrawal NJ, Chennamsetty N, et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 2012 ; 101: 102–115. [CrossRef] [PubMed] [Google Scholar]
  19. Courtois F, Schneider CP, Agrawal NJ, Trout BL. Rational design of biobetters with enhanced stability. J Pharm Sci 2015 ; 104: 2433–2440. [CrossRef] [PubMed] [Google Scholar]
  20. Raybould MIJ, Marks C, Krawczyk K, et al. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 2019 ; 116: 4025–4030. [CrossRef] [Google Scholar]
  21. Jarasch A, Koll H, Regula JT, et al. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 2015 ; 104: 1885–1898. [CrossRef] [PubMed] [Google Scholar]
  22. Nowak C, Cheung JK, Dellatore SM, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. mAbs 2017; 9: 1217–30. [CrossRef] [PubMed] [Google Scholar]
  23. Yang X, Xu W, Dukleska S, et al. Developability studies before initiation of process development. mAbs 2013; 5: 787–94. [CrossRef] [PubMed] [Google Scholar]
  24. Largy E, Cantais F, van Vyncht G, et al. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017 ; 1498: 128–146. [CrossRef] [PubMed] [Google Scholar]
  25. Biacchi M, Said N, Beck A, et al. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis-mass spectrometry coupling: application to monoclonal antibody Fc/2 charge variants. J Chromatogr A 2017 ; 1498: 120–127. [CrossRef] [PubMed] [Google Scholar]
  26. Debaene F, Wagner-Rousset E, Colas O, et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and bispecific monoclonal antibody formation. Anal Chem 2013 ; 85: 9785–9792. [CrossRef] [PubMed] [Google Scholar]
  27. Beck A, Lambert J, Sun M, Lin K. Fourth world antibody-drug conjugate summit. mAbs 2012 ; 4: 637–647. [Google Scholar]
  28. Wurch T, Lowe P, Caussanel V, et al. Development of novel protein scaffolds as alternatives to whole antibodies for imaging and therapy: status on discovery research and clinical validation. Curr Pharm Biotechnol 2008 ; 9: 502–509. [CrossRef] [PubMed] [Google Scholar]
  29. Goyon A, Excoffier M, Janin-Bussat MC, et al. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B 2017 ; 1065–66: 119–128. [CrossRef] [Google Scholar]
  30. Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. Biodrugs 2018 ; 32: 425–440. [CrossRef] [PubMed] [Google Scholar]
  31. Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous injection volume of biopharmaceuticals-pushing the boundaries. J Pharm Sci 2016 ; 105: 2255–2259. [CrossRef] [PubMed] [Google Scholar]
  32. Dent R, Joshi R, Djedjos S, et al. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. SpringerPlus 2016 ; 5: 300. [CrossRef] [PubMed] [Google Scholar]
  33. Li K, Rogers G, Nashed-Samuel Y, et al. Creating a holistic extractables and leachables (E-L) program for biotechnology products. PDA J Pharm Sci Technol 2015 ; 69: 590–619. [CrossRef] [PubMed] [Google Scholar]
  34. Xu Y, Wang D, Mason B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs 2019; 11: 239–64. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.