Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1163 - 1170
Section Bioproduction
DOI https://doi.org/10.1051/medsci/2019231
Publié en ligne 6 janvier 2020
  1. Huang L, Biolsi S, Bales KR, Kuchibhotla U. Impact of variable domain glycosylation on antibody clearance: An LC/MS characterization. Anal Biochem 2006 ; 349: 197–207. [CrossRef] [PubMed] [Google Scholar]
  2. Mo J, Yan Q, So CK, et al. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry. Anal Chem 2016 ; 88: 9495–9502. [CrossRef] [PubMed] [Google Scholar]
  3. Wei Z, Feng J, Lin HY, et al. Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem 2007 ; 79: 2797–2805. [CrossRef] [PubMed] [Google Scholar]
  4. Dashivets T, Stracke J, Dengl S, et al. Oxidation in the complementarity-determining regions differentially influences the properties of therapeutic antibodies. mAbs 2016; 8: 1525–35. [CrossRef] [PubMed] [Google Scholar]
  5. Sydow JF, Lipsmeier F, Laraillet V, et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One 2014 ; 9: e100736. [CrossRef] [PubMed] [Google Scholar]
  6. Lu X, Nobrega RP, Lynaugh H, et al. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. mAbs 2019; 11: 45–57. [CrossRef] [PubMed] [Google Scholar]
  7. Jefferis R.. Posttranslational modifications and the immunogenicity of biotherapeutics. J. Immunol Res 2016 ; 2016: 5358272. [CrossRef] [PubMed] [Google Scholar]
  8. Chennamsetty N, Voynov V, Kayser V, et al. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 2009 ; 106: 11937–11942. [CrossRef] [Google Scholar]
  9. Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013 ; 31: 612–620. [CrossRef] [PubMed] [Google Scholar]
  10. Dobson CL, Devine PW, Phillips JJ, et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 2016 ; 6: 38644. [CrossRef] [PubMed] [Google Scholar]
  11. Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res 2010 ; 27: 544–575. [CrossRef] [PubMed] [Google Scholar]
  12. Telikepalli SN, Kumru OS, Kalonia C, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci 2014 ; 103: 796–809. [CrossRef] [PubMed] [Google Scholar]
  13. van der Kant R, Karow-Zwick AR, van Durme J, et al. Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol 2017 ; 429: 1244–1261. [Google Scholar]
  14. Sule SV, Fernandez JE, Mecozzi VJ, et al. Assessing the impact of charge variants on stability and viscosity of a high concentration antibody formulation. J Pharm Sci 2017 ; 106: 3507–3514. [CrossRef] [PubMed] [Google Scholar]
  15. Tomar DS, Kumar S, Singh SK, et al. Molecular basis of high viscosity in concentrated antibody solutions: strategies for high concentration drug product development. mAbs 2016; 8: 216–28. [CrossRef] [PubMed] [Google Scholar]
  16. Sharma VK, Patapoff TW, Kabakoff B, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci USA 2014 ; 111: 18601–18606. [CrossRef] [Google Scholar]
  17. Chennamsetty N, Voynov V, Kayser V, et al. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B 2010 ; 114: 6614–6624. [CrossRef] [PubMed] [Google Scholar]
  18. Lauer TM, Agrawal NJ, Chennamsetty N, et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 2012 ; 101: 102–115. [CrossRef] [PubMed] [Google Scholar]
  19. Courtois F, Schneider CP, Agrawal NJ, Trout BL. Rational design of biobetters with enhanced stability. J Pharm Sci 2015 ; 104: 2433–2440. [CrossRef] [PubMed] [Google Scholar]
  20. Raybould MIJ, Marks C, Krawczyk K, et al. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 2019 ; 116: 4025–4030. [CrossRef] [Google Scholar]
  21. Jarasch A, Koll H, Regula JT, et al. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 2015 ; 104: 1885–1898. [CrossRef] [PubMed] [Google Scholar]
  22. Nowak C, Cheung JK, Dellatore SM, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. mAbs 2017; 9: 1217–30. [CrossRef] [PubMed] [Google Scholar]
  23. Yang X, Xu W, Dukleska S, et al. Developability studies before initiation of process development. mAbs 2013; 5: 787–94. [CrossRef] [PubMed] [Google Scholar]
  24. Largy E, Cantais F, van Vyncht G, et al. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017 ; 1498: 128–146. [CrossRef] [PubMed] [Google Scholar]
  25. Biacchi M, Said N, Beck A, et al. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis-mass spectrometry coupling: application to monoclonal antibody Fc/2 charge variants. J Chromatogr A 2017 ; 1498: 120–127. [CrossRef] [PubMed] [Google Scholar]
  26. Debaene F, Wagner-Rousset E, Colas O, et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and bispecific monoclonal antibody formation. Anal Chem 2013 ; 85: 9785–9792. [CrossRef] [PubMed] [Google Scholar]
  27. Beck A, Lambert J, Sun M, Lin K. Fourth world antibody-drug conjugate summit. mAbs 2012 ; 4: 637–647. [Google Scholar]
  28. Wurch T, Lowe P, Caussanel V, et al. Development of novel protein scaffolds as alternatives to whole antibodies for imaging and therapy: status on discovery research and clinical validation. Curr Pharm Biotechnol 2008 ; 9: 502–509. [CrossRef] [PubMed] [Google Scholar]
  29. Goyon A, Excoffier M, Janin-Bussat MC, et al. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B 2017 ; 1065–66: 119–128. [CrossRef] [Google Scholar]
  30. Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. Biodrugs 2018 ; 32: 425–440. [CrossRef] [PubMed] [Google Scholar]
  31. Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous injection volume of biopharmaceuticals-pushing the boundaries. J Pharm Sci 2016 ; 105: 2255–2259. [CrossRef] [PubMed] [Google Scholar]
  32. Dent R, Joshi R, Djedjos S, et al. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. SpringerPlus 2016 ; 5: 300. [CrossRef] [PubMed] [Google Scholar]
  33. Li K, Rogers G, Nashed-Samuel Y, et al. Creating a holistic extractables and leachables (E-L) program for biotechnology products. PDA J Pharm Sci Technol 2015 ; 69: 590–619. [CrossRef] [PubMed] [Google Scholar]
  34. Xu Y, Wang D, Mason B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs 2019; 11: 239–64. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.