Open Access
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1114 - 1120
Section Anticorps monoclonaux : de la complexité du passage du laboratoire à l’homme
Published online 06 January 2020
  1. Congy-Jolivet N, Probst A, Watier H, Thibault G. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Crit Rev Oncol Hematol 2007 ; 64: 226–233. [CrossRef] [PubMed] [Google Scholar]
  2., accessed on Jan 2019. [Google Scholar]
  3. Cartron G, Watier H, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004 ; 104: 2635–2642. [Google Scholar]
  4. Daguet A, Watier H, 2nd, Richet Charles, Héricourt Jules. workshop: therapeutic antibodies and anaphylaxis. May 31-June 1, 2011, Tours, France. MAbs ; 2011: 3 417–421. [CrossRef] [PubMed] [Google Scholar]
  5. Chung CH. Managing premedications and the risk for reactions to infusional monoclonal antibody therapy. Oncologist 2008 ; 13: 725–732. [CrossRef] [PubMed] [Google Scholar]
  6. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006 ; 355: 1018–1028. [Google Scholar]
  7. Cairo MS, Coiffier B, Reiter A, Younes A. TLS expert panel. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 2010; 149: 578–86. [CrossRef] [PubMed] [Google Scholar]
  8. Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008 ; 358: 1109–1117. [Google Scholar]
  9. Isabwe GAC, Garcia Neuer M de Las Vecillas Sanchez L, et al. Hypersensitivity reactions to therapeutic monoclonal antibodies: Phenotypes and endotypes. J Allergy Clin Immunol 2018 ; 142: 159–170.e2. [CrossRef] [PubMed] [Google Scholar]
  10. Uettwiller F, Rigal E, Hoarau C. Infections associated with monoclonal antibody and fusion protein therapy in humans. mAbs 2011; 3: 461–6. [CrossRef] [PubMed] [Google Scholar]
  11. Giezen TJ, Mantel-Teeuwisse AK, Straus SM, et al. Safety-related regulatory actions for biologicals approved in the United States and the European Union. JAMA 2008 ; 300: 1887–1896. [CrossRef] [PubMed] [Google Scholar]
  12. Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 2010 ; 9: 325–338. [CrossRef] [PubMed] [Google Scholar]
  13. Kindler V, Sappino AP, Grau GE, et al. The inducible role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989 ; 56: 731–740. [CrossRef] [PubMed] [Google Scholar]
  14. Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995 ; 2: 561–572. [CrossRef] [PubMed] [Google Scholar]
  15. Maini R, St Clair EW, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT study group. Lancet 1999 ; 354: 1932–1939. [Google Scholar]
  16. Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001 ; 345: 1098–1104. [Google Scholar]
  17. URL:; accessed Jan 2019. [Google Scholar]
  18. Heesterbeek DAC, Angelier ML, Harrison RA, Rooijakkers SHM. Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun 2018 ; 10: 455–464. [CrossRef] [PubMed] [Google Scholar]
  19. Winthrop KL, Mariette X, Silva JT, et al. ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect 2018 ; 24: Suppl 2 S21–S40. [CrossRef] [PubMed] [Google Scholar]
  20. Carson KR, Focosi D, Major EO, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the research on adverse drug events and reports (RADAR) project. Lancet Oncol 2009 ; 10: 816–824. [CrossRef] [PubMed] [Google Scholar]
  21. Bloom MW, Hamo CE, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure: Part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 2016 ; 9: e002661. [CrossRef] [PubMed] [Google Scholar]
  22. De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 2010 ; 106: 35–46. [Google Scholar]
  23. Khanna D, McMahon M, Furst DE. Anti-tumor necrosis factor alpha therapy and heart failure: what have we learned and where do we go from here?. Arthritis Rheum 2004 ; 50: 1040–1050. [CrossRef] [PubMed] [Google Scholar]
  24. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 2016 ; 375: 1749–1755. [Google Scholar]
  25. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 2007 ; 96: 1788–1795. [CrossRef] [PubMed] [Google Scholar]
  26. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 2009 ; 6: 465–477. [Google Scholar]
  27. Ewer MS, Ewer SM. Cardiotoxicity of anticancer drugs. Nat Rev Cardiol 2015 ; 12: 547–558. [Google Scholar]
  28. Crone SA, Zhao YY, Fan L, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002 ; 8: 459–465. [CrossRef] [PubMed] [Google Scholar]
  29. Parakh S, Gan HK, Parslow AC, et al. Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat Rev 2017 ; 59: 1–21. [CrossRef] [PubMed] [Google Scholar]
  30. Macdonald JB, Macdonald B, Golitz LE, et al. Cutaneous adverse effects of targeted therapies: Part I: inhibitors of the cellular membrane. J Am Acad Dermatol 2015 ; 72: 203–218. [CrossRef] [PubMed] [Google Scholar]
  31. Aster RH, Bougie DW. Drug-induced immune thrombocytopenia. N Engl J Med 2007 ; 357: 580–587. [Google Scholar]
  32. Shovman O, Tamar S, Amital H, et al. Diverse patterns of anti-TNF-α-induced lupus: case series and review of the literature. Clin Rheumatol 2018 ; 37: 563–568. [Google Scholar]
  33. Pérez-De-Lis M, Retamozo S, Flores-Chávez A, et al. Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGEAS Registry). Expert Opin Drug Saf 2017 ; 16: 1255–1271. [CrossRef] [PubMed] [Google Scholar]
  34. Bar Yehuda S, Axlerod R, Toker O, et al. The association of inflammatory bowel diseases with autoimmune disorders: a population-based report from the epi-IIRN. J Crohns Colitis 2019; 13: 324–9. [CrossRef] [PubMed] [Google Scholar]
  35. Bongartz T, Sutton AJ, Sweeting MJ, et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006 ; 295: 2275–2285. [CrossRef] [PubMed] [Google Scholar]
  36. de La Forest Divonne, M, Gottenberg JE, Salliot C. Safety of biologic DMARDs in RA patients in real life: a systematic literature review and meta-analyses of biologic registers. Joint Bone Spine 2017 ; 84: 133–140. [CrossRef] [PubMed] [Google Scholar]
  37. Ramiro S, Gaujoux-Viala C, Nam JL, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 2014 ; 73: 529–535. [CrossRef] [PubMed] [Google Scholar]
  38. Abdel-Rahman O, Fouad M. Correlation of cetuximab-induced skin rash and outcomes of solid tumor patients treated with cetuximab: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2015 ; 93: 127–135. [CrossRef] [PubMed] [Google Scholar]
  39. Zhang CJ, Zhang SY, Zhang CD, et al. Usefulness of bevacizumab-induced hypertension in patients with metastatic colorectal cancer: an updated meta-analysis. Aging (Albany NY) 2018 ; 10: 1424–1441. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.