Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1106 - 1112
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019223
Published online 06 January 2020
  1. Pepinsky RB. Shao Z. Ji B, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther 2011 ; 339: 519–529. [Google Scholar]
  2. Strazielle N. Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013 ; 10: 1473–1491. [CrossRef] [PubMed] [Google Scholar]
  3. Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013 ; 36: 437–449. [CrossRef] [PubMed] [Google Scholar]
  4. Husain B. Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs 2018 ; 32: 441–464. [CrossRef] [PubMed] [Google Scholar]
  5. Chaves C. Shawahna R. Jacob A, et al. Human ABC transporters at blood-CNS interfaces as determinants of CNS drug penetration. Curr Pharm Des 2014 ; 20: 1450–1462. [CrossRef] [PubMed] [Google Scholar]
  6. Lobo ED. Hansen RJ. Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004 ; 93: 2645–2668. [CrossRef] [PubMed] [Google Scholar]
  7. Kumagai AK. Eisenberg JB. Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 1987 ; 262: 15214–15219. [PubMed] [Google Scholar]
  8. Pardridge WM. Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs 2017 ; 31: 503–519. [CrossRef] [PubMed] [Google Scholar]
  9. Pardridge WM. Boado RJ. Giugliani R. Schmidt M. Plasma pharmacokinetics of valanafusp alpha, a human insulin receptor antibody-iduronidase fusion protein, in patients with mucopolysaccharidosis type I. BioDrugs 2018 ; 32: 169–176. [CrossRef] [PubMed] [Google Scholar]
  10. Sonoda H. Morimoto H. Yoden E, et al. A Blood-brain-barrier-penetrating anti-human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol Ther 2018 ; 26: 1366–1374. [CrossRef] [PubMed] [Google Scholar]
  11. Sumbria RK. Zhou QH. Hui EK, et al. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice. Mol Pharm 2013 ; 10: 1425–1431. [CrossRef] [PubMed] [Google Scholar]
  12. Sehlin D. Fang XT. Meier SR, et al. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-beta. Sci Rep 2017 ; 7: 17254. [CrossRef] [PubMed] [Google Scholar]
  13. Syvanen S. Fang XT. Hultqvist G, et al. A bispecific Tribody PET radioligand for visualization of amyloid-beta protofibrils - a new concept for neuroimaging. NeuroImage 2017 ; 148: 55–63. [CrossRef] [PubMed] [Google Scholar]
  14. Chang R. Al Maghribi A. Vanderpoel V, et al. Brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for Alzheimer’s disease. Mol Pharm 2018 ; 15: 4963–4973. [CrossRef] [PubMed] [Google Scholar]
  15. Chang R. Knox J. Chang J, et al. Blood-brain barrier penetrating biologic TNF-alpha inhibitor for Alzheimer’s disease. Mol Pharm 2017 ; 14: 2340–2349. [CrossRef] [PubMed] [Google Scholar]
  16. Boado RJ. Lu JZ. Hui EK, et al. Insulin receptor antibody-alpha-N-acetylglucosaminidase fusion protein penetrates the primate blood-brain barrier and reduces glycosoaminoglycans in Sanfilippo type B fibroblasts. Mol Pharm 2016 ; 13: 1385–1392. [CrossRef] [PubMed] [Google Scholar]
  17. Karaoglu Hanzatian D, Schwartz A, Gizatullin F, et al. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration. mAbs 2018; 10: 765–77. [CrossRef] [PubMed] [Google Scholar]
  18. TM. Do, I. Arnould, J. Beninga, et al. Brain exposure and therapeutic efficacy of multivalent bispecific anti-TfRC antibodies. Abstracts from the 22nd International Symposium on signal transduction at the blood-brain barriers. Fluids Barriers CNS 2019; 16 (suppl 2): 29. [CrossRef] [PubMed] [Google Scholar]
  19. Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011; 3: 84ra44. [Google Scholar]
  20. Niewoehner J. Bohrmann B. Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014 ; 81: 49–60. [CrossRef] [PubMed] [Google Scholar]
  21. Adams GP. Schier R. McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001 ; 61: 4750–4755. [Google Scholar]
  22. Boado RJ. Hui EK. Lu JZ. Pardridge WM. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos 2012 ; 40: 2021–2025. [CrossRef] [PubMed] [Google Scholar]
  23. Ohshima-Hosoyama S. Simmons HA. Goecks N, et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS One 2012 ; 7: e39036. [CrossRef] [PubMed] [Google Scholar]
  24. Pardridge WM. Boado RJ. Patrick DJ, et al. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm 2018 ; 15: 5207–5216. [CrossRef] [PubMed] [Google Scholar]
  25. Hamers-Casterman C. Atarhouch T. Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993 ; 363: 446–448. [Google Scholar]
  26. Feng M, Bian H, Wu X, et al. Construction and next-generation sequencing analysis of a large phage-displayed VNAR single-domain antibody library from six naïve nurse sharks”. Antibody Therapeutics 2019; 2 h 1–11. [Google Scholar]
  27. Nguyen VK. Desmyter A. Muyldermans S. Functional heavy-chain antibodies in Camelidae. Adv Immunol 2001 ; 79: 261–296. [CrossRef] [PubMed] [Google Scholar]
  28. Traenkle B. Rothbauer U. Under the microscope: Single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 2017 ; 8: 1030. [CrossRef] [PubMed] [Google Scholar]
  29. Li T. Bourgeois JP. Celli S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 2012 ; 26: 3969–3979. [CrossRef] [PubMed] [Google Scholar]
  30. Li T. Vandesquille M. Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release 2016 ; 243: 1–10. [CrossRef] [PubMed] [Google Scholar]
  31. Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 2016; 8: 343re2. [Google Scholar]
  32. Santin MD. Debeir T. Bridal SL, et al. Fast in vivo imaging of amyloid plaques using mu-MRI Gd-staining combined with ultrasound-induced blood-brain barrier opening. NeuroImage 2013 ; 79: 288–294. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.