Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1106 - 1112
Section Les nouveaux formats d’anticorps
DOI https://doi.org/10.1051/medsci/2019223
Publié en ligne 6 janvier 2020
  1. Pepinsky RB. Shao Z. Ji B, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther 2011 ; 339: 519–529. [Google Scholar]
  2. Strazielle N. Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013 ; 10: 1473–1491. [CrossRef] [PubMed] [Google Scholar]
  3. Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013 ; 36: 437–449. [CrossRef] [PubMed] [Google Scholar]
  4. Husain B. Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs 2018 ; 32: 441–464. [CrossRef] [PubMed] [Google Scholar]
  5. Chaves C. Shawahna R. Jacob A, et al. Human ABC transporters at blood-CNS interfaces as determinants of CNS drug penetration. Curr Pharm Des 2014 ; 20: 1450–1462. [CrossRef] [PubMed] [Google Scholar]
  6. Lobo ED. Hansen RJ. Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004 ; 93: 2645–2668. [CrossRef] [PubMed] [Google Scholar]
  7. Kumagai AK. Eisenberg JB. Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 1987 ; 262: 15214–15219. [PubMed] [Google Scholar]
  8. Pardridge WM. Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs 2017 ; 31: 503–519. [CrossRef] [PubMed] [Google Scholar]
  9. Pardridge WM. Boado RJ. Giugliani R. Schmidt M. Plasma pharmacokinetics of valanafusp alpha, a human insulin receptor antibody-iduronidase fusion protein, in patients with mucopolysaccharidosis type I. BioDrugs 2018 ; 32: 169–176. [CrossRef] [PubMed] [Google Scholar]
  10. Sonoda H. Morimoto H. Yoden E, et al. A Blood-brain-barrier-penetrating anti-human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol Ther 2018 ; 26: 1366–1374. [CrossRef] [PubMed] [Google Scholar]
  11. Sumbria RK. Zhou QH. Hui EK, et al. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice. Mol Pharm 2013 ; 10: 1425–1431. [CrossRef] [PubMed] [Google Scholar]
  12. Sehlin D. Fang XT. Meier SR, et al. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-beta. Sci Rep 2017 ; 7: 17254. [CrossRef] [PubMed] [Google Scholar]
  13. Syvanen S. Fang XT. Hultqvist G, et al. A bispecific Tribody PET radioligand for visualization of amyloid-beta protofibrils - a new concept for neuroimaging. NeuroImage 2017 ; 148: 55–63. [CrossRef] [PubMed] [Google Scholar]
  14. Chang R. Al Maghribi A. Vanderpoel V, et al. Brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for Alzheimer’s disease. Mol Pharm 2018 ; 15: 4963–4973. [CrossRef] [PubMed] [Google Scholar]
  15. Chang R. Knox J. Chang J, et al. Blood-brain barrier penetrating biologic TNF-alpha inhibitor for Alzheimer’s disease. Mol Pharm 2017 ; 14: 2340–2349. [CrossRef] [PubMed] [Google Scholar]
  16. Boado RJ. Lu JZ. Hui EK, et al. Insulin receptor antibody-alpha-N-acetylglucosaminidase fusion protein penetrates the primate blood-brain barrier and reduces glycosoaminoglycans in Sanfilippo type B fibroblasts. Mol Pharm 2016 ; 13: 1385–1392. [CrossRef] [PubMed] [Google Scholar]
  17. Karaoglu Hanzatian D, Schwartz A, Gizatullin F, et al. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration. mAbs 2018; 10: 765–77. [CrossRef] [PubMed] [Google Scholar]
  18. TM. Do, I. Arnould, J. Beninga, et al. Brain exposure and therapeutic efficacy of multivalent bispecific anti-TfRC antibodies. Abstracts from the 22nd International Symposium on signal transduction at the blood-brain barriers. Fluids Barriers CNS 2019; 16 (suppl 2): 29. [CrossRef] [PubMed] [Google Scholar]
  19. Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011; 3: 84ra44. [PubMed] [Google Scholar]
  20. Niewoehner J. Bohrmann B. Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014 ; 81: 49–60. [CrossRef] [PubMed] [Google Scholar]
  21. Adams GP. Schier R. McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001 ; 61: 4750–4755. [Google Scholar]
  22. Boado RJ. Hui EK. Lu JZ. Pardridge WM. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos 2012 ; 40: 2021–2025. [CrossRef] [PubMed] [Google Scholar]
  23. Ohshima-Hosoyama S. Simmons HA. Goecks N, et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS One 2012 ; 7: e39036. [CrossRef] [PubMed] [Google Scholar]
  24. Pardridge WM. Boado RJ. Patrick DJ, et al. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm 2018 ; 15: 5207–5216. [CrossRef] [PubMed] [Google Scholar]
  25. Hamers-Casterman C. Atarhouch T. Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993 ; 363: 446–448. [Google Scholar]
  26. Feng M, Bian H, Wu X, et al. Construction and next-generation sequencing analysis of a large phage-displayed VNAR single-domain antibody library from six naïve nurse sharks”. Antibody Therapeutics 2019; 2 h 1–11. [Google Scholar]
  27. Nguyen VK. Desmyter A. Muyldermans S. Functional heavy-chain antibodies in Camelidae. Adv Immunol 2001 ; 79: 261–296. [CrossRef] [PubMed] [Google Scholar]
  28. Traenkle B. Rothbauer U. Under the microscope: Single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 2017 ; 8: 1030. [CrossRef] [PubMed] [Google Scholar]
  29. Li T. Bourgeois JP. Celli S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J 2012 ; 26: 3969–3979. [CrossRef] [PubMed] [Google Scholar]
  30. Li T. Vandesquille M. Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release 2016 ; 243: 1–10. [CrossRef] [PubMed] [Google Scholar]
  31. Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 2016; 8: 343re2. [PubMed] [Google Scholar]
  32. Santin MD. Debeir T. Bridal SL, et al. Fast in vivo imaging of amyloid plaques using mu-MRI Gd-staining combined with ultrasound-induced blood-brain barrier opening. NeuroImage 2013 ; 79: 288–294. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.