Open Access
Issue
Med Sci (Paris)
Volume 35, Number 5, Mai 2019
Page(s) 479 - 482
Section Forum
DOI https://doi.org/10.1051/medsci/2019082
Published online 22 May 2019
  1. Académie Vétérinaire de France. Rapport de la commission relation homme-animaux sur la recherche scientifique et l’expérimentation animale : état de la question. Approuvé en mai 2012. [Google Scholar]
  2. Russell WMS, Burch RL. The principles of humane experimental technique. Londres: Methuen, 1959: 238 p. [Google Scholar]
  3. Ministère de L’enseignement supérieur, de la recherche et de l’innovation. Utilisation des animaux à des fins scientifiques dans les établissements utilisateurs français. Enquête statistique, 2016. [Google Scholar]
  4. Church RJ, Gatti DM, Urban TJ, et al. Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice. Food Chem Toxicol. 2015 ; 76 : 19–26. [CrossRef] [PubMed] [Google Scholar]
  5. Malissen M, Vallet-Erdtmann V, Guillou F, et al. Les modèles animaux en recherche biomédicale. Biofutur. 2010 ; 29 : 34–38. [Google Scholar]
  6. Ogunniyi AD, Kopecki Z, Hickey EE, et al. Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLoS One. 2018 ; 13 : e0200195. [CrossRef] [PubMed] [Google Scholar]
  7. Moldovan M, Alvarez S, Rothe C, et al. An in vivo mouse model to investigate the effect of local anesthetic nanomedicines on axonal conduction and excitability. Front Neurosci. 2018 ; 12 : 494. [Google Scholar]
  8. Gillis CM, Reber LL. Un nouveau modèle de souris pour comprendre le rôle des neutrophiles. Med Sci (Paris). 2018 ; 34 : 339–343. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Kohnken R, Porcu P, Mishra A. Overview of the use of murine models in leukemia and lymphoma research. Front Oncol. 2017 ; 7 : 22. [CrossRef] [PubMed] [Google Scholar]
  10. Talmadge JE, Singh RK, Fidler IJ, et al. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007 ; 170 : 793–804. [CrossRef] [PubMed] [Google Scholar]
  11. Haouzi P.. Murine models in critical care research. Crit Care Med. 2011 ; 39 : 2290–2293. [CrossRef] [PubMed] [Google Scholar]
  12. Radermacher P, Haouzi P. A mouse is not a rat is not a man: species-specific metabolic responses to sepsis - a nail in the coffin of murine models for critical care research?. Intensive Care Med Exp. 2013 ; 1 : 26. [Google Scholar]
  13. Lee JG, Sung YH, Baek IJ. Generation of genetically-engineered animals using engineered endonucleases. Arch Pharm Res. 2018 ; 41 : 885–897. [CrossRef] [PubMed] [Google Scholar]
  14. Creed RB, Goldberg MS. New developments in genetic rat models of Parkinson’s disease. Mov Disord. 2018 ; 33 : 717–729. [CrossRef] [PubMed] [Google Scholar]
  15. Ahmed SH. Trying to make sense of rodents’ drug choice behavior. Prog Neuropsychopharmacol Biol Psychiatry. 2018 ; 87 : 3–10. [CrossRef] [PubMed] [Google Scholar]
  16. Slaney CL, Hales CA, Robinson ESJ. Rat models of reward deficits in psychiatric disorders. Curr Opin Behav Sci. 2018 ; 22 : 136–142. [PubMed] [Google Scholar]
  17. Jeanblanc J, Rolland B, Gierski F, et al. Animal models of binge drinking, current challenges to improve face validity. Neurosci Biobehav Rev 2018; May 5. pii: S0149–7634(18)30123–4. [Google Scholar]
  18. Nascimento-Gonçalves E, Faustino-Rocha AI, Seixas F, et al. Modelling human prostate cancer: Rat models. Life Sci. 2018 ; 203 : 210–224. [CrossRef] [PubMed] [Google Scholar]
  19. Vernon MW, Wilson EA. Studies on the surgical induction of endometriosis in the rat. Fertil Steril. 1985 ; 44 : 684–694. [CrossRef] [PubMed] [Google Scholar]
  20. Sharpe-Timms KL. Using rats as a research model for the study of endometriosis. Ann NY Acad Sci. 2002 ; 955 : 318–327. [CrossRef] [Google Scholar]
  21. Bruner-Tran KL, Mokshagundam S, Herington JL, et al. Rodent models of experimental endometriosis: identifying mechanisms of disease and therapeutic targets. Curr Womens Health Rev. 2018 ; 14 : 173–188. [CrossRef] [PubMed] [Google Scholar]
  22. Tong C, Li P, Wu NL, et al. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 2010 ; 467 : 211–213. [CrossRef] [PubMed] [Google Scholar]
  23. Li D, Qiu Z, Shao Y, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013 ; 31 : 681–683. [CrossRef] [PubMed] [Google Scholar]
  24. La Gilgenkrantz H.. révolution des CRISPR est en marche. Med Sci (Paris). 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.