Open Access
Med Sci (Paris)
Volume 35, Number 5, Mai 2019
Page(s) 470 - 477
Section M/S Revues
Published online 22 May 2019
  1. Hardin-Pouzet H, Morosan S. Organismes-modèles et réglementation de la recherche animale. Med Sci (Paris). 2019 ; 35 : 53–56. [Google Scholar]
  2. Combes AN, Davies JA, Little MH. Cell–cell interactions driving kidney morphogenesis. Curr Top Dev Biol. 2015 ; 112 : 467–508. [CrossRef] [PubMed] [Google Scholar]
  3. Pleniceanu O, Harari-Steinberg O, Dekel B. Concise review: Kidney stem/progenitor cells: differentiate, sort out, or reprogram?. Stem Cells Dayt Ohio. 2010 ; 28 : 1649–1660. [CrossRef] [Google Scholar]
  4. Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008 ; 2 : 284–291. [Google Scholar]
  5. Brown AC, Blank U, Adams DC, et al. Isolation and culture of cells from the nephrogenic zone of the embryonic mouse kidney. J Vis Exp 2011; 22 : pii: 2555. [Google Scholar]
  6. Brown AC, Muthukrishnan SD, Oxburgh L. A synthetic niche for nephron progenitor cells. Dev Cell. 2015 ; 34 : 229–241. [CrossRef] [PubMed] [Google Scholar]
  7. Li Z, Araoka T, Wu J, et al. 3D Culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell. 2016 ; 19 : 516–529. [Google Scholar]
  8. Unbekandt M, Davies JA. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010 ; 77 : 407–416. [CrossRef] [PubMed] [Google Scholar]
  9. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014 ; 345 : 1247125. [Google Scholar]
  10. Ganeva V, Unbekandt M, Davies JA. An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis. 2011 ; 7 : 83–87. [Google Scholar]
  11. Chang C-H, Davies JA. An improved method of renal tissue engineering, by combining renal dissociation and reaggregation with a low-volume culture technique, results in development of engineered kidneys complete with loops of Henle. Nephron Exp Nephrol. 2012 ; 121 : e79–e85. [CrossRef] [PubMed] [Google Scholar]
  12. Lawrence ML, Chang CH, Davies JA. Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Sci Rep. 2015 ; 5 : 9092. [CrossRef] [PubMed] [Google Scholar]
  13. Mills CG, Lawrence ML, Munro DAD, et al. Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci Rep. 2017 ; 7 : 14824. [CrossRef] [PubMed] [Google Scholar]
  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 ; 282 : 1145–1147. [Google Scholar]
  15. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  16. Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014 ; 16 : 118–126. [CrossRef] [PubMed] [Google Scholar]
  17. Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015 ; 6 : 8715. [CrossRef] [PubMed] [Google Scholar]
  18. Morizane R, Lam AQ, Freedman BS, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015 ; 33 : 1193–1200. [CrossRef] [PubMed] [Google Scholar]
  19. Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015 ; 526 : 564–568. [CrossRef] [PubMed] [Google Scholar]
  20. Mae S-I, Shono A, Shiota F, et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun. 2013 ; 4 : 1367. [CrossRef] [PubMed] [Google Scholar]
  21. Lam AQ, Freedman BS, Morizane R, et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol. 2014 ; 25 : 1211–1225. [Google Scholar]
  22. Toyohara T, Mae S-I, Sueta S-I, et al. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 2015 ; 4 : 980–992. [CrossRef] [PubMed] [Google Scholar]
  23. Xia Y, Nivet E, Sancho-Martinez I, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013 ; 15 : 1507–1515. [CrossRef] [PubMed] [Google Scholar]
  24. Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014 ; 14 : 53–67. [Google Scholar]
  25. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013 ; 339 : 823–826. [Google Scholar]
  26. Cruz NM, Song X, Czerniecki SM, et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 2017 ; 16 : 1112–1119. [CrossRef] [PubMed] [Google Scholar]
  27. Freedman BS, Lam AQ, Sundsbak JL, et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol. 2013 ; 24 : 1571–1586. [Google Scholar]
  28. Forbes TA, Howden SE, Lawlor K, et al. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet. 2018 ; 102 : 816–831. [Google Scholar]
  29. Sharmin S, Taguchi A, Kaku Y, et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol. 2016 ; 27 : 1778–1791. [Google Scholar]
  30. Kim YK, Refaeli I, Brooks CR, et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells Dayt Ohio. 2017 ; 35 : 2366–2378. [CrossRef] [Google Scholar]
  31. Boreström C, Jonebring A, Guo J, et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell–derived kidney model for drug discovery. Kidney Int. 2018 ; 94 : 1099–1110. [CrossRef] [PubMed] [Google Scholar]
  32. Giraud S, Steichen C, Allain G, et al. Dynamic transcriptomic analysis of ischemic injury in a porcine pre-clinical model mimicking donors deceased after circulatory death. Sci Rep. 2018 ; 8 : 5986. [CrossRef] [PubMed] [Google Scholar]
  33. Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol. 2005 ; 25 : 612–620. [PubMed] [Google Scholar]
  34. Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J. 2011 ; 13 : 615–631. [CrossRef] [PubMed] [Google Scholar]
  35. Pannu N, Nadim MK. An overview of drug-induced acute kidney injury. Crit Care Med. 2008 ; 36 : S216–S223. [CrossRef] [PubMed] [Google Scholar]
  36. Detrisac CJ, Sens MA, Garvin AJ, et al. Tissue culture of human kidney epithelial cells of proximal tubule origin. Kidney Int. 1984 ; 25 : 383–390. [CrossRef] [PubMed] [Google Scholar]
  37. Jenkinson SE, Chung GW, van Loon E, et al. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch. 2012 ; 464 : 601–611. [CrossRef] [PubMed] [Google Scholar]
  38. Ramm S, Adler M, Vaidya VS. A high-throughput screening assay to identify kidney toxic compounds. Curr Protoc Toxicol 2016; 69 : 10.1–9.10.26. [Google Scholar]
  39. Czerniecki SM, Cruz NM, Harder JL, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell. 2018 ; 22 : 929–940. [Google Scholar]
  40. Przepiorski A, Sander V, Tran T, et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep. 2018 ; 11 : 470–484. [CrossRef] [Google Scholar]
  41. Musah S, Dimitrakakis N, Camacho DM, et al. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nat Protoc. 2018 ; 13 : 1662–1685. [CrossRef] [PubMed] [Google Scholar]
  42. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003 ; 9 : 53–60. [CrossRef] [PubMed] [Google Scholar]
  43. van den Berg CW, Ritsma L, Avramut MC, et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 2018 ; 10 : 751–765. [CrossRef] [Google Scholar]
  44. Schlaeger TM, Daheron L, Brickler TR, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015 ; 33 : 58–63. [CrossRef] [PubMed] [Google Scholar]
  45. Steichen C, Luce E, Maluenda J, et al. Messenger RNA-versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity. Stem Cells Transl Med. 2014 ; 3 : 686–691. [CrossRef] [PubMed] [Google Scholar]
  46. Assou S, Bouckenheimer J, De Vos J. Concise review: assessing the genome integrity of human induced pluripotent stem cells: What quality control metrics?. Stem Cells Dayt Ohio. 2018 ; 36 : 814–821. [CrossRef] [Google Scholar]
  47. Morizane R, Bonventre JV. Kidney organoids: a translational journey. Trends Mol Med. 2017 ; 23 : 246–263. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.