Open Access
Issue
Med Sci (Paris)
Volume 35, Number 1, Janvier 2019
Page(s) 55 - 61
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018309
Published online 23 January 2019
  1. Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine. Circ Res 2016 ; 118 :515–530. [Google Scholar]
  2. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007 ; 204 :2349–2362. [CrossRef] [PubMed] [Google Scholar]
  3. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015 ; 16 :343–353. [CrossRef] [PubMed] [Google Scholar]
  4. Abbott NJ, Pizzo ME, Preston JE, et al. The role of brain barriers in fluid movement in the CNS: is there a “glymphatic” system?. Acta Neuropathol 2018 ; 135 :387–407. [CrossRef] [PubMed] [Google Scholar]
  5. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS?. Trends Neurosci 2016 ; 39 :581–586. [CrossRef] [PubMed] [Google Scholar]
  6. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4 :147ra111. [CrossRef] [PubMed] [Google Scholar]
  7. Bedussi B, Almasian M, de Vos J, et al. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab 2018 ; 38 :719–726. [CrossRef] [PubMed] [Google Scholar]
  8. Lochhead JJ, Wolak DJ, Pizzo ME, et al. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 2015 ; 35 :371–381. [CrossRef] [PubMed] [Google Scholar]
  9. Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 1974 ; 45 :50–60. [CrossRef] [PubMed] [Google Scholar]
  10. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981 ; 240 :F329–F336. [Google Scholar]
  11. Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985 ; 326 :47–63. [CrossRef] [PubMed] [Google Scholar]
  12. Rennels ML, Blaumanis OR, Grady PA. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 1990 ; 52 :431–439. [Google Scholar]
  13. Harrison IF, Siow B, Akilo AB, et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. Elife 2018; 7 : pii e34028. [Google Scholar]
  14. Ringstad G, Valnes LM, Dale AM, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018 ; 3 :e121537. [Google Scholar]
  15. Pizzo ME, Wolak DJ, Kumar NN, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol (Lond) 2018 ; 596 :445–475. [CrossRef] [Google Scholar]
  16. Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017 ; 127 :3210–3219. [CrossRef] [PubMed] [Google Scholar]
  17. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013 ; 342 :373–377. [Google Scholar]
  18. Lee H, Xie L, Yu M, et al. The effect of body posture on brain glymphatic transport. J Neurosci 2015 ; 35 :11034–11044. [CrossRef] [PubMed] [Google Scholar]
  19. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014 ; 76 :845–861. [CrossRef] [PubMed] [Google Scholar]
  20. Iliff JJ, Goldman SA, Nedergaard M. Clearing the mind: Implications of dural lymphatic vessels for brain function. Lancet Neurol 2015 ; 14 :977–979. [CrossRef] [PubMed] [Google Scholar]
  21. Smith AJ, Yao X, Dix JA, et al. Test of the glymphatic hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife 2017; 6 : pii e27679. [Google Scholar]
  22. Asgari M, de Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. Sci Rep 2016 ; 6 :38635. [CrossRef] [PubMed] [Google Scholar]
  23. Weed LH. Studies on cerebro-spinal fluid. No. III : the pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res 1914; 31 :51–91. [PubMed] [Google Scholar]
  24. Go KG, Houthoff HJ, Hartsuiker J, et al. Fluid secretion in arachnoid cysts as a clue to cerebrospinal fluid absorption at the arachnoid granulation. J Neurosurg 1986 ; 65 :642–648. [CrossRef] [PubMed] [Google Scholar]
  25. Johnston M, Zakharov A, Papaiconomou C, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 2004 ; 1 :2. [CrossRef] [PubMed] [Google Scholar]
  26. Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017 ; 8 :1434. [CrossRef] [PubMed] [Google Scholar]
  27. Lukic´ IK, Gluncic´ V, Ivkic´ G, et al. Virtual dissection: a lesson from the 18th century. Lancet 2003; 362 :2110–3. [CrossRef] [PubMed] [Google Scholar]
  28. Andres KH, von Düring M, Muszynski K, et al. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 1987 ; 175 :289–301. [Google Scholar]
  29. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015 ; 523 :337–341. [CrossRef] [PubMed] [Google Scholar]
  30. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015 ; 212 :991–999. [CrossRef] [PubMed] [Google Scholar]
  31. Absinta M, Ha SK, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 2017 ; 6 :e29738. [CrossRef] [PubMed] [Google Scholar]
  32. Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med 2017 ; 214 :3645–3667. [CrossRef] [PubMed] [Google Scholar]
  33. Petrova TV, Koh GY. Organ-specific lymphatic vasculature: From development to pathophysiology. J Exp Med 2018 ; 215 :35–49. [CrossRef] [PubMed] [Google Scholar]
  34. Benveniste H, Liu X, Koundal S, et al. The glymphatic system and waste clearance with brain aging: A review. Gerontology 2018 ; 1–14. [Google Scholar]
  35. Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018 ; 560 :185–191. [CrossRef] [PubMed] [Google Scholar]
  36. Sáinz-Jaspeado M, Claesson-Welsh L. Cytokines regulating lymphangiogenesis. Curr Opin Immunol 2018 ; 53 :58–63. [CrossRef] [PubMed] [Google Scholar]
  37. Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol 2018; Sep 7. doi: 10.1111/bpa.12656. [Google Scholar]
  38. Wen YR, Yang JH, Wang X, et al. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen Res 2018 ; 13 :709–716. [Google Scholar]
  39. Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 2018 ; 21 :1380–1391. [CrossRef] [PubMed] [Google Scholar]
  40. Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 2017 ; 18 :385–392. [CrossRef] [PubMed] [Google Scholar]
  41. Bower NI, Koltowska K, Pichol-Thievend C, et al. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci 2017 ; 20 :774–783. [CrossRef] [PubMed] [Google Scholar]
  42. Mato M, Ookawara S, Sakamoto A, et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci USA 1996 ; 93 :3269–3274. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.