Free Access
Med Sci (Paris)
Volume 35, Number 1, Janvier 2019
Page(s) 46 - 54
Section M/S Revues
Published online 23 January 2019
  1. Ott M, Amunts A, Brown A. Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 2016 ; 85 :77–101. [CrossRef] [PubMed] [Google Scholar]
  2. Burger G, Gray MW, Lang BF. Mitochondrial genomes: anything goes. Trends Genet 2003 ; 19 :709–716. [CrossRef] [PubMed] [Google Scholar]
  3. Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999 ; 23 :147. [Google Scholar]
  4. Breton S, Beaupré HD. Un système de transmission de l’ADN mitochondrial sexuellement équitable. Med Sci (Paris) 2007 ; 23 :1038–1040. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Breton S, Milani L, Ghiselli F, et al. A resourceful genome: Updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet 2014 ; 30 :555–564. [CrossRef] [PubMed] [Google Scholar]
  6. Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A DNA Mapp Seq Anal 2016 ; 27 :3098–3101. [PubMed] [Google Scholar]
  7. Breton S, Stewart DT, Shepardson S, et al. Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)?. Mol Biol Evol 2011 ; 28 :1645–1659. [PubMed] [Google Scholar]
  8. Capt C, Renaut S, Ghiselli F, et al. Deciphering the link between doubly uniparental inheritance of mtDNA and sex determination in bivalves: clues from comparative transcriptomics. Genome Biol Evol 2018 ; 10 :577–590. [CrossRef] [PubMed] [Google Scholar]
  9. Minoiu I, Burzynski A, Breton S. Analysis of the coding potential of the ORF in the control region of the female-transmitted Mytilus mtDNA. Gene 2016 ; 576 :586–588. [Google Scholar]
  10. Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides?. Trends Endocrinol Metab 2013 ; 24 :222–228. [CrossRef] [PubMed] [Google Scholar]
  11. Hashimoto Y, Niikura T, Tajima H, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 2001 ; 98 :6336–6341. [CrossRef] [Google Scholar]
  12. Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003 ; 423 :456–461. [CrossRef] [PubMed] [Google Scholar]
  13. Tajima H, Niikura T, Hashimoto Y, et al. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 2002 ; 324 :227–231. [CrossRef] [PubMed] [Google Scholar]
  14. Mercer TR, Neph S, Dinger ME, et al. The human mitochondrial transcriptome. Cell 2011 ; 146 :645–658. [CrossRef] [PubMed] [Google Scholar]
  15. Bodzioch M, Lapicka-Bodzioch K, Zapala B, et al. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics 2009 ; 94 :247–256. [CrossRef] [PubMed] [Google Scholar]
  16. Ramos A, Barbena E, Mateiu L, et al. Nuclear insertions of mitochondrial origin: Database updating and usefulness in cancer studies. Mitochondrion 2011 ; 11 :946–953. [CrossRef] [PubMed] [Google Scholar]
  17. Paharkova V, Alvarez G, Nakamura H, et al. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production. Mol Cell Endocrinol 2015 ; 413 :96–100. [CrossRef] [PubMed] [Google Scholar]
  18. Ying G, Iribarren P, Zhou Y, et al. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 2004 ; 172 :7078–7085. [CrossRef] [PubMed] [Google Scholar]
  19. Hoang PT, Park P, Cobb LJ, et al. The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism 2010 ; 59 :343–349. [CrossRef] [PubMed] [Google Scholar]
  20. Okada AK, Teranishi K, Lobo F, et al. The mitochondrial-derived peptides, HumaninS14G and small Humanin-like peptide 2, exhibit chaperone-like activity. Sci Rep 2017 ; 7 :7802. [CrossRef] [PubMed] [Google Scholar]
  21. Hashimoto Y, Kurita M, Aiso S, et al. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell 2009 ; 20 :2864–2873. [CrossRef] [PubMed] [Google Scholar]
  22. Xu X, Chua CC, Gao J, et al. Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 2008 ; 1227 :12–18. [CrossRef] [PubMed] [Google Scholar]
  23. Lee C, Zeng J, Drew BG, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 2015 ; 21 :443–454. [CrossRef] [PubMed] [Google Scholar]
  24. Richter R, Pajak A, Dennerlein S, et al. Translation termination in human mitochondrial ribosomes. Biochem Soc Trans 2010 ; 38 :1523–1526. [PubMed] [Google Scholar]
  25. Seligmann H.. Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 2011 ; 105 :271–285. [CrossRef] [PubMed] [Google Scholar]
  26. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013 ; 13 :572–583. [Google Scholar]
  27. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009 ; 89 :1025–1078. [CrossRef] [PubMed] [Google Scholar]
  28. Lee C, Kim KH, Cohen P. MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 2016 ; 100 :182–187. [CrossRef] [PubMed] [Google Scholar]
  29. Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008 ; 134 :405–415. [CrossRef] [PubMed] [Google Scholar]
  30. Fuku N, Pareja-Galeano H, Zempo H, et al. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity?. Aging Cell 2015 ; 14 :921–923. [CrossRef] [PubMed] [Google Scholar]
  31. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol 2014 ; 24 :464–471. [Google Scholar]
  32. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. Low methionine ingestion by rats extends life span. J Nutr 1993 ; 123 :269–274. [PubMed] [Google Scholar]
  33. Ming W, Lu G, Xin S, et al. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation. Biochem Biophys Res Commun 2016 ; 476 :412–419. [Google Scholar]
  34. Cobb LJ, Lee C, Xiao J, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 2016 ; 8 :796–809. [CrossRef] [PubMed] [Google Scholar]
  35. Xiao J, Howard L, Wan J, et al. Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel biomarker for prostate cancer risk. Oncotarget 2017 ; 8 :94900–94909. [PubMed] [Google Scholar]
  36. Nashine S, Cohen P, Nesburn AB, et al. Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration. Sci Rep 2018 ; 8 :15175. [CrossRef] [PubMed] [Google Scholar]
  37. Faure E, Delaye L, Tribolo S, et al. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 2011 ; 6 :56. [Google Scholar]
  38. Breton S, Beaupré HD, Stewart DT, et al. The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough ?. Trends Genet 2007 ; 23 :465–474. [CrossRef] [PubMed] [Google Scholar]
  39. Zouros E.. Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol Biol 2013 ; 40 :1–31. [Google Scholar]
  40. Siew N, Fischer D. Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins 2003 ; 53 :241–251. [CrossRef] [PubMed] [Google Scholar]
  41. Breton S, Burger G, Stewart DT, Blier PU. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 2006 ; 172 :1107–1119. [CrossRef] [PubMed] [Google Scholar]
  42. Mitchell A, Guerra D, Stewart D, Breton S. In silico analyses of mitochondrial ORFans in freshwater mussels (Bivalvia: Unionoida) provide a framework for future studies of their origin and function. BMC Genomics 2016 ; 17 :597. [CrossRef] [PubMed] [Google Scholar]
  43. Milani L, Ghiselli F, Guerra D, et al. A comparative analysis of mitochondrial ORFans: new clues on their origin and role in species with doubly uniparental inheritance of mitochondria. Genome Biol Evol 2013 ; 5 :1408–1434. [CrossRef] [PubMed] [Google Scholar]
  44. Landry CR, Zhong X, Nielly-Thibault L, Roucou X. Found in translation: functions and evolution of a recently discovered alternative proteome. Curr Opin Struct Biol 2015 ; 32 :74–80. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.