Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 1, Janvier 2019
Page(s) 55 - 61
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018309
Publié en ligne 23 janvier 2019
  1. Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine. Circ Res 2016 ; 118 :515–530. [Google Scholar]
  2. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007 ; 204 :2349–2362. [CrossRef] [PubMed] [Google Scholar]
  3. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015 ; 16 :343–353. [CrossRef] [PubMed] [Google Scholar]
  4. Abbott NJ, Pizzo ME, Preston JE, et al. The role of brain barriers in fluid movement in the CNS: is there a “glymphatic” system?. Acta Neuropathol 2018 ; 135 :387–407. [CrossRef] [PubMed] [Google Scholar]
  5. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS?. Trends Neurosci 2016 ; 39 :581–586. [CrossRef] [PubMed] [Google Scholar]
  6. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4 :147ra111. [CrossRef] [PubMed] [Google Scholar]
  7. Bedussi B, Almasian M, de Vos J, et al. Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. J Cereb Blood Flow Metab 2018 ; 38 :719–726. [CrossRef] [PubMed] [Google Scholar]
  8. Lochhead JJ, Wolak DJ, Pizzo ME, et al. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 2015 ; 35 :371–381. [CrossRef] [PubMed] [Google Scholar]
  9. Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 1974 ; 45 :50–60. [CrossRef] [PubMed] [Google Scholar]
  10. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981 ; 240 :F329–F336. [Google Scholar]
  11. Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 1985 ; 326 :47–63. [CrossRef] [PubMed] [Google Scholar]
  12. Rennels ML, Blaumanis OR, Grady PA. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 1990 ; 52 :431–439. [Google Scholar]
  13. Harrison IF, Siow B, Akilo AB, et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. Elife 2018; 7 : pii e34028. [Google Scholar]
  14. Ringstad G, Valnes LM, Dale AM, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018 ; 3 :e121537. [Google Scholar]
  15. Pizzo ME, Wolak DJ, Kumar NN, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol (Lond) 2018 ; 596 :445–475. [CrossRef] [Google Scholar]
  16. Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017 ; 127 :3210–3219. [CrossRef] [PubMed] [Google Scholar]
  17. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013 ; 342 :373–377. [Google Scholar]
  18. Lee H, Xie L, Yu M, et al. The effect of body posture on brain glymphatic transport. J Neurosci 2015 ; 35 :11034–11044. [CrossRef] [PubMed] [Google Scholar]
  19. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014 ; 76 :845–861. [CrossRef] [PubMed] [Google Scholar]
  20. Iliff JJ, Goldman SA, Nedergaard M. Clearing the mind: Implications of dural lymphatic vessels for brain function. Lancet Neurol 2015 ; 14 :977–979. [CrossRef] [PubMed] [Google Scholar]
  21. Smith AJ, Yao X, Dix JA, et al. Test of the glymphatic hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife 2017; 6 : pii e27679. [Google Scholar]
  22. Asgari M, de Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. Sci Rep 2016 ; 6 :38635. [CrossRef] [PubMed] [Google Scholar]
  23. Weed LH. Studies on cerebro-spinal fluid. No. III : the pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res 1914; 31 :51–91. [PubMed] [Google Scholar]
  24. Go KG, Houthoff HJ, Hartsuiker J, et al. Fluid secretion in arachnoid cysts as a clue to cerebrospinal fluid absorption at the arachnoid granulation. J Neurosurg 1986 ; 65 :642–648. [CrossRef] [PubMed] [Google Scholar]
  25. Johnston M, Zakharov A, Papaiconomou C, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 2004 ; 1 :2. [CrossRef] [PubMed] [Google Scholar]
  26. Ma Q, Ineichen BV, Detmar M, et al. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017 ; 8 :1434. [CrossRef] [PubMed] [Google Scholar]
  27. Lukic´ IK, Gluncic´ V, Ivkic´ G, et al. Virtual dissection: a lesson from the 18th century. Lancet 2003; 362 :2110–3. [CrossRef] [PubMed] [Google Scholar]
  28. Andres KH, von Düring M, Muszynski K, et al. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 1987 ; 175 :289–301. [Google Scholar]
  29. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015 ; 523 :337–341. [CrossRef] [PubMed] [Google Scholar]
  30. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015 ; 212 :991–999. [CrossRef] [PubMed] [Google Scholar]
  31. Absinta M, Ha SK, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 2017 ; 6 :e29738. [CrossRef] [PubMed] [Google Scholar]
  32. Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med 2017 ; 214 :3645–3667. [CrossRef] [PubMed] [Google Scholar]
  33. Petrova TV, Koh GY. Organ-specific lymphatic vasculature: From development to pathophysiology. J Exp Med 2018 ; 215 :35–49. [CrossRef] [PubMed] [Google Scholar]
  34. Benveniste H, Liu X, Koundal S, et al. The glymphatic system and waste clearance with brain aging: A review. Gerontology 2018 ; 1–14. [Google Scholar]
  35. Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018 ; 560 :185–191. [CrossRef] [PubMed] [Google Scholar]
  36. Sáinz-Jaspeado M, Claesson-Welsh L. Cytokines regulating lymphangiogenesis. Curr Opin Immunol 2018 ; 53 :58–63. [CrossRef] [PubMed] [Google Scholar]
  37. Wang L, Zhang Y, Zhao Y, et al. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol 2018; Sep 7. doi: 10.1111/bpa.12656. [Google Scholar]
  38. Wen YR, Yang JH, Wang X, et al. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen Res 2018 ; 13 :709–716. [Google Scholar]
  39. Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 2018 ; 21 :1380–1391. [CrossRef] [PubMed] [Google Scholar]
  40. Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 2017 ; 18 :385–392. [CrossRef] [PubMed] [Google Scholar]
  41. Bower NI, Koltowska K, Pichol-Thievend C, et al. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci 2017 ; 20 :774–783. [CrossRef] [PubMed] [Google Scholar]
  42. Mato M, Ookawara S, Sakamoto A, et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc Natl Acad Sci USA 1996 ; 93 :3269–3274. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.