Open Access
Med Sci (Paris)
Volume 34, Number 12, Décembre 2018
Page(s) 1047 - 1055
Section M/S Revues
Published online 09 January 2019
  1. Sadoul K, Khochbin S. The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J 2016 ; 473 : 1859–1868. [CrossRef] [PubMed] [Google Scholar]
  2. Gadadhar S, Bodakuntla S, Natarajan K, Janke C. The tubulin code at a glance. J Cell Sci 2017 ; 130 : 1347–1353. [Google Scholar]
  3. L‘Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 1985; 24 : 473–8. [CrossRef] [PubMed] [Google Scholar]
  4. Akella JS, Wloga D, Kim J, et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010 ; 467 : 218–222. [CrossRef] [PubMed] [Google Scholar]
  5. Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999 ; 96 : 79–88. [CrossRef] [PubMed] [Google Scholar]
  6. Szyk A, Deaconescu AM, Spector J, et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 2014 ; 157 : 1405–1415. [CrossRef] [PubMed] [Google Scholar]
  7. Coombes C, Yamamoto A, McClellan M, et al. Mechanism of microtubule lumen entry for the alpha-tubulin acetyltransferase enzyme alphaTAT1. Proc Natl Acad Sci U S A 2016 ; 113 : E7176–E7E84. [CrossRef] [PubMed] [Google Scholar]
  8. Montagnac G, Chavrier P. Quand les microtubules rencontrent les puits recouverts de clathrine et permettent aux cellules de tenir le cap. Med Sci (Paris) 2014 ; 30 : 130–133. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002 ; 417 : 455–458. [CrossRef] [PubMed] [Google Scholar]
  10. North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003 ; 11 : 437–444. [CrossRef] [PubMed] [Google Scholar]
  11. Skultetyova L, Ustinova K, Kutil Z, et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 2017 ; 7 : 11547. [CrossRef] [PubMed] [Google Scholar]
  12. Skoge RH, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci 2016 ; 129 : 2972–2982. [Google Scholar]
  13. Park IY, Powell RT, Tripathi DN, et al. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell 2016 ; 166 : 950–962. [CrossRef] [PubMed] [Google Scholar]
  14. Alonso VL, Ritagliati C, Cribb P, et al. Overexpression of bromodomain factor 3 in Trypanosoma cruzi (TcBDF3) affects differentiation of the parasite and protects it against bromodomain inhibitors. FEBS J 2016 ; 283 : 2051–2066. [CrossRef] [PubMed] [Google Scholar]
  15. Portran D, Schaedel L, Xu Z, et al. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 2017 ; 19 : 391–398. [CrossRef] [PubMed] [Google Scholar]
  16. Howes SC, Alushin GM, Shida T, et al. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 2014 ; 25 : 257–266. [CrossRef] [PubMed] [Google Scholar]
  17. Barra HS, Unates LE, Sayavedra MS, Caputto R. Capacities for binding amino acids by tRNAs from rat brain and their changes during development. J Neurochem 1972 ; 19 : 2289–2297. [CrossRef] [PubMed] [Google Scholar]
  18. Aillaud C, Bosc C, Saoudi Y, et al. Evidence for new C-terminally truncated variants of alpha- and beta-tubulins. Mol Biol Cell 2016 ; 27 : 640–653. [CrossRef] [PubMed] [Google Scholar]
  19. Paturle-Lafanechere L, Manier M, Trigault N, et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994 ; 107 : 1529–1543. [Google Scholar]
  20. Paturle-Lafanechere L, Edde B, Denoulet P, et al. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 1991 ; 30 : 10523–10528. [CrossRef] [PubMed] [Google Scholar]
  21. Lafanechere L, Job D. The third tubulin pool. Neurochem Res 2000 ; 25 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  22. Erck C, Peris L, Andrieux A, et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci U S A 2005 ; 102 : 7853–7858. [Google Scholar]
  23. Prota AE, Magiera MM, Kuijpers M, et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 2013 ; 200 : 259–270. [CrossRef] [PubMed] [Google Scholar]
  24. Wehland J, Weber K. Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two-domain structure of the enzyme. J Cell Biol 1987 ; 104 : 1059–1067. [CrossRef] [PubMed] [Google Scholar]
  25. Dal Piaz F, Vassallo A, Lepore L, et al. Sesterterpenes as tubulin tyrosine ligase inhibitors. First insight of structure-activity relationships and discovery of new lead. J Med Chem 2009; 52 : 3814–28. [CrossRef] [PubMed] [Google Scholar]
  26. Aillaud C, Bosc C, Peris L, et al. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 2017 ; 358 : 1448–1453. [Google Scholar]
  27. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, et al. Vasohibins encode tubulin detyrosinating activity. Science 2017 ; 358 : 1453–1456. [Google Scholar]
  28. Fonrose X, Ausseil F, Soleilhac E, et al. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res 2007 ; 67 : 3371–3378. [Google Scholar]
  29. Barisic M Silva e Sousa R, Tripathy SK, et al. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 2015 ; 348 : 799–803. [Google Scholar]
  30. Peris L, Thery M, Faure J, et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 2006 ; 174 : 839–849. [CrossRef] [PubMed] [Google Scholar]
  31. Peris L, Wagenbach M, Lafanechere L, et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 2009 ; 185 : 1159–1166. [CrossRef] [PubMed] [Google Scholar]
  32. Dunn S, Morrison EE, Liverpool TB, et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 2008 ; 121 : 1085–1095. [Google Scholar]
  33. d‘Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011; 17 : 968–74. [CrossRef] [PubMed] [Google Scholar]
  34. Butler D, Bendiske J, Michaelis ML, et al. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 2007 ; 562 : 20–27. [CrossRef] [PubMed] [Google Scholar]
  35. Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington‘s disease by increasing tubulin acetylation. J Neurosci 2007 ; 27 : 3571–3583. [CrossRef] [PubMed] [Google Scholar]
  36. Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 2014 ; 5 : 5245. [CrossRef] [PubMed] [Google Scholar]
  37. Patel VP, Chu CT. Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson‘s disease. Exp Neurol 2014 ; 257 : 170–181. [CrossRef] [PubMed] [Google Scholar]
  38. Marcos S, Moreau J, Backer S, et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 2009 ; 4 : e5405. [CrossRef] [PubMed] [Google Scholar]
  39. Konishi Y, Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009 ; 12 : 559–567. [CrossRef] [PubMed] [Google Scholar]
  40. Gobrecht P, Andreadaki A, Diekmann H, et al. Promotion of functional nerve regeneration by inhibition of microtubule detyrosination. J Neurosci 2016 ; 36 : 3890–3902. [CrossRef] [PubMed] [Google Scholar]
  41. Gu S, Liu Y, Zhu B, et al. Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition. J Biol Chem 2016 ; 291 : 5396–5405. [CrossRef] [PubMed] [Google Scholar]
  42. Boggs AE, Vitolo MI, Whipple RA, et al. Alpha-tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 2015 ; 75 : 203–215. [Google Scholar]
  43. Oh S, You E, Ko P, et al. Genetic disruption of tubulin acetyltransferase, alphaTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/beta-catenin signaling. Biochem Biophys Res Commun 2017 ; 482 : 8–14. [Google Scholar]
  44. Saba NF, Magliocca KR, Kim S, et al. Acetylated tubulin (AT) as a prognostic marker in squamous cell carcinoma of the head and neck. Head Neck Pathol 2014 ; 8 : 66–72. [CrossRef] [PubMed] [Google Scholar]
  45. Aguilar A, Becker L, Tedeschi T, et al. Alpha-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell 2014 ; 25 : 1854–1866. [CrossRef] [PubMed] [Google Scholar]
  46. Wickstrom SA, Masoumi KC, Khochbin S, et al. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J 2010 ; 29 : 131–144. [CrossRef] [PubMed] [Google Scholar]
  47. Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, et al. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk Lymphoma 2011 ; 52 : 1544–1555. [CrossRef] [PubMed] [Google Scholar]
  48. Lee JH, Mahendran A, Yao Y, et al. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A 2013 ; 110 : 15704–15709. [CrossRef] [PubMed] [Google Scholar]
  49. Lafanechere L, Courtay-Cahen C, Kawakami T, et al. Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 1998 ; 111 : Pt 2 171–181. [PubMed] [Google Scholar]
  50. Kato C, Miyazaki K, Nakagawa A, et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 2004 ; 112 : 365–375. [CrossRef] [PubMed] [Google Scholar]
  51. Mialhe A, Lafanechere L, Treilleux I, et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 2001 ; 61 : 5024–5027. [Google Scholar]
  52. Whipple RA, Matrone MA, Cho EH, et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010 ; 70 : 8127–8137. [Google Scholar]
  53. Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 2004 ; 114 : 898–907. [CrossRef] [PubMed] [Google Scholar]
  54. Kobayashi H, Kosaka T, Mikami S, et al. Vasohibin-1 as a novel microenvironmental biomarker for patient risk reclassification in low-risk prostate cancer. Oncotarget 2018 ; 9 : 10203–10210. [PubMed] [Google Scholar]
  55. Kapoor S.. Comment and reply on: Vasohibin-1 and its emerging role in the evolution and progression of systemic tumors besides renal cell carcinomas. Expert Opin Ther Targets 2013 ; 17 : 105–106. [CrossRef] [PubMed] [Google Scholar]
  56. Sabo Y, Walsh D, Barry DS, et al. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe 2013 ; 14 : 535–546. [CrossRef] [PubMed] [Google Scholar]
  57. Zhou J, Scherer J, Yi J, Vallee RB. Role of kinesins in directed adenovirus transport and cytoplasmic exploration. PLoS Pathog 2018 ; 14 : e1007055. [CrossRef] [PubMed] [Google Scholar]
  58. Nakashima H, Kaufmann JK, Wang PY, et al. Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. J Clin Invest 2015 ; 125 : 4269–4280. [CrossRef] [PubMed] [Google Scholar]
  59. Zhang D, Wu CT, Qi X, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014 ; 129 : 346–358. [CrossRef] [PubMed] [Google Scholar]
  60. McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A 2014 ; 111 : E5178–E5186. [CrossRef] [PubMed] [Google Scholar]
  61. Wang Z, Leng Y, Wang J, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of alpha-tubulin acetylation and FGF-21 up-regulation. Sci Rep 2016 ; 6 : 19626. [CrossRef] [PubMed] [Google Scholar]
  62. Belmadani S, Pous C, Fischmeister R, Mery PF. Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Mol Cell Biochem 2004 ; 258 : 35–48. [CrossRef] [PubMed] [Google Scholar]
  63. Robison P, Caporizzo MA, Ahmadzadeh H, et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 2016; 352 : aaf0659. [Google Scholar]
  64. Kerr JP, Robison P, Shi G, et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 2015 ; 6 : 8526. [CrossRef] [PubMed] [Google Scholar]
  65. Ran J, Yang Y, Li D, et al. Deacetylation of alpha-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci Rep 2015 ; 5 : 12917. [CrossRef] [PubMed] [Google Scholar]
  66. Moutin MJ, Bosc C, Peris L, Andrieux A. La boucle est bouclée : des complexes enzymatiques qui détyrosinent les microtubules enfin découverts. Med Sci (Paris) 2018 ; 34 : 1022–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.