Open Access
Numéro
Med Sci (Paris)
Volume 34, Numéro 12, Décembre 2018
Page(s) 1047 - 1055
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018295
Publié en ligne 9 janvier 2019
  1. Sadoul K, Khochbin S. The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J 2016 ; 473 : 1859–1868. [CrossRef] [PubMed] [Google Scholar]
  2. Gadadhar S, Bodakuntla S, Natarajan K, Janke C. The tubulin code at a glance. J Cell Sci 2017 ; 130 : 1347–1353. [Google Scholar]
  3. L‘Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 1985; 24 : 473–8. [CrossRef] [PubMed] [Google Scholar]
  4. Akella JS, Wloga D, Kim J, et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010 ; 467 : 218–222. [CrossRef] [PubMed] [Google Scholar]
  5. Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999 ; 96 : 79–88. [CrossRef] [PubMed] [Google Scholar]
  6. Szyk A, Deaconescu AM, Spector J, et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 2014 ; 157 : 1405–1415. [CrossRef] [PubMed] [Google Scholar]
  7. Coombes C, Yamamoto A, McClellan M, et al. Mechanism of microtubule lumen entry for the alpha-tubulin acetyltransferase enzyme alphaTAT1. Proc Natl Acad Sci U S A 2016 ; 113 : E7176–E7E84. [CrossRef] [PubMed] [Google Scholar]
  8. Montagnac G, Chavrier P. Quand les microtubules rencontrent les puits recouverts de clathrine et permettent aux cellules de tenir le cap. Med Sci (Paris) 2014 ; 30 : 130–133. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002 ; 417 : 455–458. [CrossRef] [PubMed] [Google Scholar]
  10. North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003 ; 11 : 437–444. [CrossRef] [PubMed] [Google Scholar]
  11. Skultetyova L, Ustinova K, Kutil Z, et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 2017 ; 7 : 11547. [CrossRef] [PubMed] [Google Scholar]
  12. Skoge RH, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci 2016 ; 129 : 2972–2982. [Google Scholar]
  13. Park IY, Powell RT, Tripathi DN, et al. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell 2016 ; 166 : 950–962. [CrossRef] [PubMed] [Google Scholar]
  14. Alonso VL, Ritagliati C, Cribb P, et al. Overexpression of bromodomain factor 3 in Trypanosoma cruzi (TcBDF3) affects differentiation of the parasite and protects it against bromodomain inhibitors. FEBS J 2016 ; 283 : 2051–2066. [CrossRef] [PubMed] [Google Scholar]
  15. Portran D, Schaedel L, Xu Z, et al. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 2017 ; 19 : 391–398. [CrossRef] [PubMed] [Google Scholar]
  16. Howes SC, Alushin GM, Shida T, et al. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 2014 ; 25 : 257–266. [CrossRef] [PubMed] [Google Scholar]
  17. Barra HS, Unates LE, Sayavedra MS, Caputto R. Capacities for binding amino acids by tRNAs from rat brain and their changes during development. J Neurochem 1972 ; 19 : 2289–2297. [CrossRef] [PubMed] [Google Scholar]
  18. Aillaud C, Bosc C, Saoudi Y, et al. Evidence for new C-terminally truncated variants of alpha- and beta-tubulins. Mol Biol Cell 2016 ; 27 : 640–653. [CrossRef] [PubMed] [Google Scholar]
  19. Paturle-Lafanechere L, Manier M, Trigault N, et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994 ; 107 : 1529–1543. [Google Scholar]
  20. Paturle-Lafanechere L, Edde B, Denoulet P, et al. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 1991 ; 30 : 10523–10528. [CrossRef] [PubMed] [Google Scholar]
  21. Lafanechere L, Job D. The third tubulin pool. Neurochem Res 2000 ; 25 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  22. Erck C, Peris L, Andrieux A, et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci U S A 2005 ; 102 : 7853–7858. [CrossRef] [PubMed] [Google Scholar]
  23. Prota AE, Magiera MM, Kuijpers M, et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 2013 ; 200 : 259–270. [CrossRef] [PubMed] [Google Scholar]
  24. Wehland J, Weber K. Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two-domain structure of the enzyme. J Cell Biol 1987 ; 104 : 1059–1067. [CrossRef] [PubMed] [Google Scholar]
  25. Dal Piaz F, Vassallo A, Lepore L, et al. Sesterterpenes as tubulin tyrosine ligase inhibitors. First insight of structure-activity relationships and discovery of new lead. J Med Chem 2009; 52 : 3814–28. [CrossRef] [PubMed] [Google Scholar]
  26. Aillaud C, Bosc C, Peris L, et al. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 2017 ; 358 : 1448–1453. [CrossRef] [Google Scholar]
  27. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, et al. Vasohibins encode tubulin detyrosinating activity. Science 2017 ; 358 : 1453–1456. [CrossRef] [Google Scholar]
  28. Fonrose X, Ausseil F, Soleilhac E, et al. Parthenolide inhibits tubulin carboxypeptidase activity. Cancer Res 2007 ; 67 : 3371–3378. [CrossRef] [PubMed] [Google Scholar]
  29. Barisic M Silva e Sousa R, Tripathy SK, et al. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 2015 ; 348 : 799–803. [CrossRef] [Google Scholar]
  30. Peris L, Thery M, Faure J, et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 2006 ; 174 : 839–849. [CrossRef] [PubMed] [Google Scholar]
  31. Peris L, Wagenbach M, Lafanechere L, et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 2009 ; 185 : 1159–1166. [CrossRef] [PubMed] [Google Scholar]
  32. Dunn S, Morrison EE, Liverpool TB, et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 2008 ; 121 : 1085–1095. [CrossRef] [Google Scholar]
  33. d‘Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 2011; 17 : 968–74. [CrossRef] [PubMed] [Google Scholar]
  34. Butler D, Bendiske J, Michaelis ML, et al. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 2007 ; 562 : 20–27. [CrossRef] [PubMed] [Google Scholar]
  35. Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington‘s disease by increasing tubulin acetylation. J Neurosci 2007 ; 27 : 3571–3583. [CrossRef] [PubMed] [Google Scholar]
  36. Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 2014 ; 5 : 5245. [CrossRef] [PubMed] [Google Scholar]
  37. Patel VP, Chu CT. Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson‘s disease. Exp Neurol 2014 ; 257 : 170–181. [CrossRef] [PubMed] [Google Scholar]
  38. Marcos S, Moreau J, Backer S, et al. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 2009 ; 4 : e5405. [CrossRef] [PubMed] [Google Scholar]
  39. Konishi Y, Setou M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 2009 ; 12 : 559–567. [CrossRef] [PubMed] [Google Scholar]
  40. Gobrecht P, Andreadaki A, Diekmann H, et al. Promotion of functional nerve regeneration by inhibition of microtubule detyrosination. J Neurosci 2016 ; 36 : 3890–3902. [CrossRef] [PubMed] [Google Scholar]
  41. Gu S, Liu Y, Zhu B, et al. Loss of alpha-tubulin acetylation is associated with TGF-beta-induced epithelial-mesenchymal transition. J Biol Chem 2016 ; 291 : 5396–5405. [CrossRef] [PubMed] [Google Scholar]
  42. Boggs AE, Vitolo MI, Whipple RA, et al. Alpha-tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 2015 ; 75 : 203–215. [CrossRef] [Google Scholar]
  43. Oh S, You E, Ko P, et al. Genetic disruption of tubulin acetyltransferase, alphaTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/beta-catenin signaling. Biochem Biophys Res Commun 2017 ; 482 : 8–14. [CrossRef] [Google Scholar]
  44. Saba NF, Magliocca KR, Kim S, et al. Acetylated tubulin (AT) as a prognostic marker in squamous cell carcinoma of the head and neck. Head Neck Pathol 2014 ; 8 : 66–72. [CrossRef] [PubMed] [Google Scholar]
  45. Aguilar A, Becker L, Tedeschi T, et al. Alpha-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell 2014 ; 25 : 1854–1866. [CrossRef] [PubMed] [Google Scholar]
  46. Wickstrom SA, Masoumi KC, Khochbin S, et al. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J 2010 ; 29 : 131–144. [CrossRef] [PubMed] [Google Scholar]
  47. Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, et al. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells. Leuk Lymphoma 2011 ; 52 : 1544–1555. [CrossRef] [Google Scholar]
  48. Lee JH, Mahendran A, Yao Y, et al. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A 2013 ; 110 : 15704–15709. [CrossRef] [PubMed] [Google Scholar]
  49. Lafanechere L, Courtay-Cahen C, Kawakami T, et al. Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci 1998 ; 111 : Pt 2 171–181. [PubMed] [Google Scholar]
  50. Kato C, Miyazaki K, Nakagawa A, et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int J Cancer 2004 ; 112 : 365–375. [CrossRef] [PubMed] [Google Scholar]
  51. Mialhe A, Lafanechere L, Treilleux I, et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 2001 ; 61 : 5024–5027. [Google Scholar]
  52. Whipple RA, Matrone MA, Cho EH, et al. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010 ; 70 : 8127–8137. [CrossRef] [Google Scholar]
  53. Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 2004 ; 114 : 898–907. [CrossRef] [PubMed] [Google Scholar]
  54. Kobayashi H, Kosaka T, Mikami S, et al. Vasohibin-1 as a novel microenvironmental biomarker for patient risk reclassification in low-risk prostate cancer. Oncotarget 2018 ; 9 : 10203–10210. [PubMed] [Google Scholar]
  55. Kapoor S.. Comment and reply on: Vasohibin-1 and its emerging role in the evolution and progression of systemic tumors besides renal cell carcinomas. Expert Opin Ther Targets 2013 ; 17 : 105–106. [CrossRef] [PubMed] [Google Scholar]
  56. Sabo Y, Walsh D, Barry DS, et al. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe 2013 ; 14 : 535–546. [CrossRef] [PubMed] [Google Scholar]
  57. Zhou J, Scherer J, Yi J, Vallee RB. Role of kinesins in directed adenovirus transport and cytoplasmic exploration. PLoS Pathog 2018 ; 14 : e1007055. [CrossRef] [PubMed] [Google Scholar]
  58. Nakashima H, Kaufmann JK, Wang PY, et al. Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. J Clin Invest 2015 ; 125 : 4269–4280. [CrossRef] [PubMed] [Google Scholar]
  59. Zhang D, Wu CT, Qi X, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014 ; 129 : 346–358. [CrossRef] [PubMed] [Google Scholar]
  60. McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A 2014 ; 111 : E5178–E5186. [CrossRef] [PubMed] [Google Scholar]
  61. Wang Z, Leng Y, Wang J, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of alpha-tubulin acetylation and FGF-21 up-regulation. Sci Rep 2016 ; 6 : 19626. [CrossRef] [PubMed] [Google Scholar]
  62. Belmadani S, Pous C, Fischmeister R, Mery PF. Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Mol Cell Biochem 2004 ; 258 : 35–48. [CrossRef] [PubMed] [Google Scholar]
  63. Robison P, Caporizzo MA, Ahmadzadeh H, et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 2016; 352 : aaf0659. [CrossRef] [Google Scholar]
  64. Kerr JP, Robison P, Shi G, et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 2015 ; 6 : 8526. [CrossRef] [PubMed] [Google Scholar]
  65. Ran J, Yang Y, Li D, et al. Deacetylation of alpha-tubulin and cortactin is required for HDAC6 to trigger ciliary disassembly. Sci Rep 2015 ; 5 : 12917. [CrossRef] [PubMed] [Google Scholar]
  66. Moutin MJ, Bosc C, Peris L, Andrieux A. La boucle est bouclée : des complexes enzymatiques qui détyrosinent les microtubules enfin découverts. Med Sci (Paris) 2018 ; 34 : 1022–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.