Free Access
Med Sci (Paris)
Volume 34, Novembre 2018
Les Cahiers de Myologie
Page(s) 26 - 31
Section Fiche pratique
Published online 12 November 2018
  1. Chevessier F Bauche-Godard S Leroy JP et al. The origin of tubular aggregates in human myopathies. J Pathol 2005 ; 207 : 313–323. [CrossRef] [PubMed] [Google Scholar]
  2. Stormorken H Sjaastad O Langslet A et al. A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis. Clin Genet 1985 ; 28 : 367–374. [PubMed] [Google Scholar]
  3. Bohm J Chevessier F Maues De Paula A et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013 ; 92 : 271–278. [Google Scholar]
  4. Misceo D Holmgren A Louch WE et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014 ; 35 : 556–564. [CrossRef] [PubMed] [Google Scholar]
  5. Morin G Bruechle NO Singh AR et al. Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Hum Mutat 2014 ; 35 : 1221–1232. [CrossRef] [PubMed] [Google Scholar]
  6. Nesin V Wiley G Kousi M et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 2014 ; 111 : 4197–4202. [CrossRef] [Google Scholar]
  7. Bohm J Bulla M Urquhart JE et al. ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy. Hum Mutat 2017 ; 38 : 426–438. [CrossRef] [PubMed] [Google Scholar]
  8. Barone V Del Re V Gamberucci A et al. Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Hum Mutat 2017 ; 38 : 1761–1773. [CrossRef] [PubMed] [Google Scholar]
  9. Bohm J Lornage X Chevessier F et al. CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy. Acta Neuropathol 2018 ; 135 : 149–151. [CrossRef] [PubMed] [Google Scholar]
  10. Lee KW Maeng JS Choi JY et al. Role of Junctin protein interactions in cellular dynamics of calsequestrin polymer upon calcium perturbation. J Biol Chem 2012 ; 287 : 1679–1687. [CrossRef] [PubMed] [Google Scholar]
  11. Park CY Hoover PJ Mullins FM et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009 ; 136 : 876–890. [CrossRef] [PubMed] [Google Scholar]
  12. Luik RM Wu MM Buchanan J et al. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 2006 ; 174 : 815–825. [CrossRef] [PubMed] [Google Scholar]
  13. Stathopulos PB Zheng L Li GY et al. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008 ; 135 : 110–122. [CrossRef] [PubMed] [Google Scholar]
  14. Bohm J Chevessier F Koch C et al. Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 2014 ; 51 : 824–833. [CrossRef] [PubMed] [Google Scholar]
  15. Endo Y Noguchi S Hara Y et al. Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca2+ channels. Hum Mol Genet 2015 ; 24 : 637–648. [CrossRef] [PubMed] [Google Scholar]
  16. Markello T Chen D Kwan JY et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 2015 ; 114 : 474–482. [Google Scholar]
  17. Noury JB Bohm J Peche GA et al. Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscul Disord 2017 ; 27 : 78–82. [CrossRef] [PubMed] [Google Scholar]
  18. Walter MC Rossius M Zitzelsberger M et al. 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 2015 ; 25 : 577–584. [CrossRef] [PubMed] [Google Scholar]
  19. Garibaldi M Fattori F Riva B et al. A novel gain-of-function mutation in ORAI1 causes late-onset tubular aggregate myopathy and congenital miosis. Clin Genet 2017 ; 91 : 780–786. [CrossRef] [PubMed] [Google Scholar]
  20. White JG Giant electron-dense chains, clusters and granules in megakaryocytes and platelets with normal dense bodies: an inherited thrombocytopenic disorder. Platelets 2003 ; 14 : 109–121. [Google Scholar]
  21. Muller HD Vielhaber S Brunn A et al. Dominantly inherited myopathy with novel tubular aggregates containing 1–21 tubulofilamentous structures. Acta Neuropathol 2001 ; 102 : 27–35. [PubMed] [Google Scholar]
  22. Hedberg C Niceta M Fattori F et al. Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations. J Neurol 2014 ; 261 : 870–876. [CrossRef] [PubMed] [Google Scholar]
  23. Harris E Burki U Marini-Bettolo C et al. Complex phenotypes associated with STIM1 mutations in both coiled coil and EF-hand domains. Neuromuscul Disord 2017 ; 27 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  24. Chevessier F Marty I Paturneau-Jouas M et al. Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging. Neuromuscul Disord 2001 ; 14 : 208–216. [Google Scholar]
  25. Schiaffino S. Tubular aggregates in skeletal muscle: just a special type of protein aggregates?. Neuromuscul Disord 2012 ; 22 : 199–207. [CrossRef] [PubMed] [Google Scholar]
  26. Goebel HH When tubules aggregate. Neuromuscul Disord 2012 ; 22 : 208–210. [CrossRef] [PubMed] [Google Scholar]
  27. Engel WK Bishop DW Cunningham GG Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation. J Ultrastruct Res 1970 ; 31 : 507–525. [Google Scholar]
  28. Engel AG Shen XM Selcen D et al. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015 ; 14 : 420–434. [CrossRef] [PubMed] [Google Scholar]
  29. Feske S Gwack Y Prakriya M et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006 ; 441 : 179–185. [CrossRef] [PubMed] [Google Scholar]
  30. Picard C McCarl CA Papolos A et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009 ; 360 : 1971–1980. [Google Scholar]
  31. Lacruz RS Feske S Diseases caused by mutations in ORAI1 and STIM1. Ann NY Acad Sci 2015 ; 1356 : 45–79. [CrossRef] [Google Scholar]
  32. Stathopulos PB Li GY Plevin MJ et al. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 2006 ; 281 : 35855–35862. [CrossRef] [PubMed] [Google Scholar]
  33. Yuan JP Zeng W Dorwart MR et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 2009 ; 11 : 337–343. [CrossRef] [PubMed] [Google Scholar]
  34. Kawasaki T Lange I Feske S A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 2009 ; 385 : 49–54. [Google Scholar]
  35. Prakriya M. The molecular physiology of CRAC channels. Immunol Rev 2009 ; 231 : 88–98. [CrossRef] [PubMed] [Google Scholar]
  36. Cai X Zhou Y Nwokonko RM et al. The Orai1 store-operated calcium channel functions as a hexamer. J Biol Chem 2016 ; 291 : 25764–25775. [CrossRef] [PubMed] [Google Scholar]
  37. Hou X Pedi L Diver MM et al. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012 ; 338 : 1308–1313. [Google Scholar]
  38. Thompson JL Shuttleworth TJ How many Orai’s does it take to make a CRAC channel?. Sci Rep 2013 ; 3 : 1961. [CrossRef] [PubMed] [Google Scholar]
  39. Vig M Beck A Billingsley JM et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006 ; 16 : 2073–2079. [CrossRef] [PubMed] [Google Scholar]
  40. Zheng H Zhou MH Hu C et al. Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 2013 ; 288 : 11263–11272. [CrossRef] [PubMed] [Google Scholar]
  41. Schiaffino S Reggiani C Fiber types in mammalian skeletal muscles. Physiol Rev 2011 ; 91 : 1447–1531. [Google Scholar]
  42. Wang S Trumble WR Liao H et al. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 1998 ; 5 : 476–483. [CrossRef] [PubMed] [Google Scholar]
  43. Wang L Zhang L Li S et al. Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin. Sci Rep 2015 ; 5 : 11349. [CrossRef] [PubMed] [Google Scholar]
  44. Park H Park IY Kim E et al. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem 2004 ; 279 : 18026–18033. [CrossRef] [PubMed] [Google Scholar]
  45. Park H Wu S Dunker AK et al. Polymerization of calsequestrin. Implications for Ca2+ regulation. J Biol Chem 2003 ; 278 : 16176–16182. [CrossRef] [PubMed] [Google Scholar]
  46. Cho JH Ko KM Singaruvelu G et al. Functional importance of polymerization and localization of calsequestrin in C. elegans. J Cell Sci 2007 ; 120 : 1551–1558. [Google Scholar]
  47. Alonso-Jimenez A Ramon C Dols-Icardo O et al. Corpus callosum agenesis, myopathy and pinpoint pupils: consider Stormorken syndrome. Eur J Neurol 2018 ; 25 : e25–e26. [CrossRef] [PubMed] [Google Scholar]
  48. Shahrizaila N Lowe J Wills A Familial myopathy with tubular aggregates associated with abnormal pupils. Neurology 2004 ; 63 : 1111–1113. [Google Scholar]
  49. Tasca G D’Amico A Monforte M et al. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1. Neuromuscul Disord 2015 ; 25 : 898–903. [CrossRef] [PubMed] [Google Scholar]
  50. Rohkamm R Boxler K Ricker K et al. A dominantly inherited myopathy with excessive tubular aggregates. Neurology 1983 ; 33 : 331–336. [Google Scholar]
  51. Rossi D Vezzani B Galli L et al. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates. Hum Mutat 2014 ; 35 : 1163–1170. [CrossRef] [PubMed] [Google Scholar]
  52. Fahrner M Stadlbauer M Muik M et al. A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nat Commun 2018 ; 9 : 825. [CrossRef] [PubMed] [Google Scholar]
  53. Worley PF Zeng W Huang GN et al. TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 2007 ; 42 : 205–211. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.