Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Novembre 2018
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 26 - 31 | |
Section | Fiche pratique | |
DOI | https://doi.org/10.1051/medsci/201834s208 | |
Publié en ligne | 12 novembre 2018 |
- Chevessier F Bauche-Godard S Leroy JP et al. The origin of tubular aggregates in human myopathies. J Pathol 2005 ; 207 : 313–323. [CrossRef] [PubMed] [Google Scholar]
- Stormorken H Sjaastad O Langslet A et al. A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis. Clin Genet 1985 ; 28 : 367–374. [PubMed] [Google Scholar]
- Bohm J Chevessier F Maues De Paula A et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013 ; 92 : 271–278. [Google Scholar]
- Misceo D Holmgren A Louch WE et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014 ; 35 : 556–564. [CrossRef] [PubMed] [Google Scholar]
- Morin G Bruechle NO Singh AR et al. Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Hum Mutat 2014 ; 35 : 1221–1232. [CrossRef] [PubMed] [Google Scholar]
- Nesin V Wiley G Kousi M et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 2014 ; 111 : 4197–4202. [CrossRef] [Google Scholar]
- Bohm J Bulla M Urquhart JE et al. ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy. Hum Mutat 2017 ; 38 : 426–438. [CrossRef] [PubMed] [Google Scholar]
- Barone V Del Re V Gamberucci A et al. Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Hum Mutat 2017 ; 38 : 1761–1773. [CrossRef] [PubMed] [Google Scholar]
- Bohm J Lornage X Chevessier F et al. CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy. Acta Neuropathol 2018 ; 135 : 149–151. [CrossRef] [PubMed] [Google Scholar]
- Lee KW Maeng JS Choi JY et al. Role of Junctin protein interactions in cellular dynamics of calsequestrin polymer upon calcium perturbation. J Biol Chem 2012 ; 287 : 1679–1687. [CrossRef] [PubMed] [Google Scholar]
- Park CY Hoover PJ Mullins FM et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009 ; 136 : 876–890. [CrossRef] [PubMed] [Google Scholar]
- Luik RM Wu MM Buchanan J et al. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 2006 ; 174 : 815–825. [CrossRef] [PubMed] [Google Scholar]
- Stathopulos PB Zheng L Li GY et al. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008 ; 135 : 110–122. [CrossRef] [PubMed] [Google Scholar]
- Bohm J Chevessier F Koch C et al. Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 2014 ; 51 : 824–833. [CrossRef] [PubMed] [Google Scholar]
- Endo Y Noguchi S Hara Y et al. Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca2+ channels. Hum Mol Genet 2015 ; 24 : 637–648. [CrossRef] [PubMed] [Google Scholar]
- Markello T Chen D Kwan JY et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 2015 ; 114 : 474–482. [Google Scholar]
- Noury JB Bohm J Peche GA et al. Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation. Neuromuscul Disord 2017 ; 27 : 78–82. [CrossRef] [PubMed] [Google Scholar]
- Walter MC Rossius M Zitzelsberger M et al. 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 2015 ; 25 : 577–584. [CrossRef] [PubMed] [Google Scholar]
- Garibaldi M Fattori F Riva B et al. A novel gain-of-function mutation in ORAI1 causes late-onset tubular aggregate myopathy and congenital miosis. Clin Genet 2017 ; 91 : 780–786. [CrossRef] [PubMed] [Google Scholar]
- White JG Giant electron-dense chains, clusters and granules in megakaryocytes and platelets with normal dense bodies: an inherited thrombocytopenic disorder. Platelets 2003 ; 14 : 109–121. [Google Scholar]
- Muller HD Vielhaber S Brunn A et al. Dominantly inherited myopathy with novel tubular aggregates containing 1–21 tubulofilamentous structures. Acta Neuropathol 2001 ; 102 : 27–35. [PubMed] [Google Scholar]
- Hedberg C Niceta M Fattori F et al. Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations. J Neurol 2014 ; 261 : 870–876. [CrossRef] [PubMed] [Google Scholar]
- Harris E Burki U Marini-Bettolo C et al. Complex phenotypes associated with STIM1 mutations in both coiled coil and EF-hand domains. Neuromuscul Disord 2017 ; 27 : 861–872. [CrossRef] [PubMed] [Google Scholar]
- Chevessier F Marty I Paturneau-Jouas M et al. Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging. Neuromuscul Disord 2001 ; 14 : 208–216. [Google Scholar]
- Schiaffino S. Tubular aggregates in skeletal muscle: just a special type of protein aggregates?. Neuromuscul Disord 2012 ; 22 : 199–207. [CrossRef] [PubMed] [Google Scholar]
- Goebel HH When tubules aggregate. Neuromuscul Disord 2012 ; 22 : 208–210. [CrossRef] [PubMed] [Google Scholar]
- Engel WK Bishop DW Cunningham GG Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation. J Ultrastruct Res 1970 ; 31 : 507–525. [Google Scholar]
- Engel AG Shen XM Selcen D et al. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 2015 ; 14 : 420–434. [CrossRef] [PubMed] [Google Scholar]
- Feske S Gwack Y Prakriya M et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006 ; 441 : 179–185. [CrossRef] [PubMed] [Google Scholar]
- Picard C McCarl CA Papolos A et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009 ; 360 : 1971–1980. [Google Scholar]
- Lacruz RS Feske S Diseases caused by mutations in ORAI1 and STIM1. Ann NY Acad Sci 2015 ; 1356 : 45–79. [CrossRef] [Google Scholar]
- Stathopulos PB Li GY Plevin MJ et al. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 2006 ; 281 : 35855–35862. [CrossRef] [PubMed] [Google Scholar]
- Yuan JP Zeng W Dorwart MR et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 2009 ; 11 : 337–343. [CrossRef] [PubMed] [Google Scholar]
- Kawasaki T Lange I Feske S A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 2009 ; 385 : 49–54. [Google Scholar]
- Prakriya M. The molecular physiology of CRAC channels. Immunol Rev 2009 ; 231 : 88–98. [CrossRef] [PubMed] [Google Scholar]
- Cai X Zhou Y Nwokonko RM et al. The Orai1 store-operated calcium channel functions as a hexamer. J Biol Chem 2016 ; 291 : 25764–25775. [CrossRef] [PubMed] [Google Scholar]
- Hou X Pedi L Diver MM et al. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012 ; 338 : 1308–1313. [Google Scholar]
- Thompson JL Shuttleworth TJ How many Orai’s does it take to make a CRAC channel?. Sci Rep 2013 ; 3 : 1961. [CrossRef] [PubMed] [Google Scholar]
- Vig M Beck A Billingsley JM et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006 ; 16 : 2073–2079. [CrossRef] [PubMed] [Google Scholar]
- Zheng H Zhou MH Hu C et al. Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 2013 ; 288 : 11263–11272. [CrossRef] [PubMed] [Google Scholar]
- Schiaffino S Reggiani C Fiber types in mammalian skeletal muscles. Physiol Rev 2011 ; 91 : 1447–1531. [Google Scholar]
- Wang S Trumble WR Liao H et al. Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 1998 ; 5 : 476–483. [CrossRef] [PubMed] [Google Scholar]
- Wang L Zhang L Li S et al. Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin. Sci Rep 2015 ; 5 : 11349. [CrossRef] [PubMed] [Google Scholar]
- Park H Park IY Kim E et al. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. J Biol Chem 2004 ; 279 : 18026–18033. [CrossRef] [PubMed] [Google Scholar]
- Park H Wu S Dunker AK et al. Polymerization of calsequestrin. Implications for Ca2+ regulation. J Biol Chem 2003 ; 278 : 16176–16182. [CrossRef] [PubMed] [Google Scholar]
- Cho JH Ko KM Singaruvelu G et al. Functional importance of polymerization and localization of calsequestrin in C. elegans. J Cell Sci 2007 ; 120 : 1551–1558. [Google Scholar]
- Alonso-Jimenez A Ramon C Dols-Icardo O et al. Corpus callosum agenesis, myopathy and pinpoint pupils: consider Stormorken syndrome. Eur J Neurol 2018 ; 25 : e25–e26. [CrossRef] [PubMed] [Google Scholar]
- Shahrizaila N Lowe J Wills A Familial myopathy with tubular aggregates associated with abnormal pupils. Neurology 2004 ; 63 : 1111–1113. [Google Scholar]
- Tasca G D’Amico A Monforte M et al. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1. Neuromuscul Disord 2015 ; 25 : 898–903. [CrossRef] [PubMed] [Google Scholar]
- Rohkamm R Boxler K Ricker K et al. A dominantly inherited myopathy with excessive tubular aggregates. Neurology 1983 ; 33 : 331–336. [Google Scholar]
- Rossi D Vezzani B Galli L et al. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates. Hum Mutat 2014 ; 35 : 1163–1170. [CrossRef] [PubMed] [Google Scholar]
- Fahrner M Stadlbauer M Muik M et al. A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nat Commun 2018 ; 9 : 825. [CrossRef] [PubMed] [Google Scholar]
- Worley PF Zeng W Huang GN et al. TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 2007 ; 42 : 205–211. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.