Free Access
Issue
Med Sci (Paris)
Volume 34, Number 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
Page(s) 554 - 562
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183406015
Published online 31 July 2018
  1. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
  2. Farrel P, Le Marechal C, Ferec C, et al. Discovery of the principal cystic fibrosis mutation (F508del) in ancient DNA from iron age Europeans. Nature Precedings 2007. http://hdl.handle.net/10101/npre.2007.1276.1. [Google Scholar]
  3. O’Connor GT, Quinton HB, Kahn R, et al. Case-mix adjustment for evaluation of mortality in cystic fibrosis. Pediatr Pulmonol 2002 ; 33 : 99–105. [CrossRef] [PubMed] [Google Scholar]
  4. Jun I, Cheng MH, Sim E, et al. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels. J Physiol 2016 ; 594 : 2929–2955. [CrossRef] [PubMed] [Google Scholar]
  5. Tabary O, Zahm JM, Hinnrasky J, et al. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro. Am J Pathol 1998 ; 153 : 921–930. [CrossRef] [PubMed] [Google Scholar]
  6. Benedetto R, Ousingsawat J, Wanitchakool P, et al. Epithelial chloride transport by CFTR requires TMEM16A. Sci Rep 2017 ; 7 : 12397. [CrossRef] [PubMed] [Google Scholar]
  7. Foster PS, Plank M, Collison A, et al. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev 2013 ; 253 : 198–215. [CrossRef] [PubMed] [Google Scholar]
  8. Sonneville F, Ruffin M, Guillot L, et al. New insights about miRNAs in cystic fibrosis. Am J Pathol 2015 ; 185 : 897–908. [CrossRef] [PubMed] [Google Scholar]
  9. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014 ; 42 : D68–D73. [CrossRef] [PubMed] [Google Scholar]
  10. Mercey O, Popa A, Cavard A, et al. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett 2017 ; 591 : 693–705. [CrossRef] [PubMed] [Google Scholar]
  11. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009 ; 19 : 92–105. [CrossRef] [PubMed] [Google Scholar]
  12. Marcorelles P, Montier T, Gillet D, et al. Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol 2007 ; 42 : 1032–1040. [CrossRef] [PubMed] [Google Scholar]
  13. Viart V, Bergougnoux A, Bonini J, et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J 2015 ; 45 : 116–128. [CrossRef] [PubMed] [Google Scholar]
  14. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in DeltaF508 cystic fibrosis airway epithelium. J Immunol 2013 ; 190 : 3354–3362. [CrossRef] [PubMed] [Google Scholar]
  15. Ramachandran S, Karp PH, Osterhaus SR, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 2013 ; 49 : 544–551. [CrossRef] [PubMed] [Google Scholar]
  16. Ramachandran S, Karp PH, Jiang P, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 2012 ; 109 : 13362–13367. [CrossRef] [Google Scholar]
  17. Gillen AE, Gosalia N, Leir SH, Harris A MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 2011 ; 438 : 25–32. [CrossRef] [PubMed] [Google Scholar]
  18. Kim K, Hung RJ, Perrimon N. miR-263a regulates ENaC to maintain osmotic and intestinal stem cell homeostasis in Drosophila. Dev Cell 2017 ; 40 : 23–36. [CrossRef] [PubMed] [Google Scholar]
  19. Sonneville F, Ruffin M, Coraux C, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun 2017 ; 8 : 710. [CrossRef] [PubMed] [Google Scholar]
  20. Zhong T, Perelman JM, Kolosov VP, Zhou XD. MiR-146a negatively regulates neutrophil elastase-induced MUC5AC secretion from 16HBE human bronchial epithelial cells. Mol Cell Biochem 2011 ; 358 : 249–255. [CrossRef] [PubMed] [Google Scholar]
  21. Hassan F, Nuovo GJ, Crawford M, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 2012 ; 7 : e50837. [CrossRef] [PubMed] [Google Scholar]
  22. Fabbri E, Borgatti M, Montagner G, et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol 2014 ; 50 : 1144–1155. [CrossRef] [PubMed] [Google Scholar]
  23. McKiernan PJ, Cunningham O, Greene CM, Cryan SA. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 2013 ; 8 : 3907–3915. [Google Scholar]
  24. Oglesby IK, Vencken SF, Agrawal R, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015 ; 46 : 1350–1360. [CrossRef] [PubMed] [Google Scholar]
  25. Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 2011 ; 286 : 11604–11615. [CrossRef] [PubMed] [Google Scholar]
  26. Marcet B, Chevalier B, Luxardi G, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol 2011 ; 13 : 693–699. [CrossRef] [PubMed] [Google Scholar]
  27. Chevalier B, Adamiok A, Mercey O, et al. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat Commun 2015 ; 6 : 8386. [CrossRef] [PubMed] [Google Scholar]
  28. Stolzenburg LR, Wachtel S, Dang H, Harris A. miR-1343 attenuates pathways of fibrosis by targeting the TGF-beta receptors. Biochem J 2016 ; 473 : 245–256. [CrossRef] [PubMed] [Google Scholar]
  29. Fabbri E, Tamanini A, Jakova T, et al. A peptide nucleic acid against microRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules 2017 ; 23 : [Google Scholar]
  30. Weldon S, McNally P, McAuley DF, et al. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 2014 ; 190 : 165–174. [CrossRef] [PubMed] [Google Scholar]
  31. Zhang PX, Cheng J, Zou S, et al. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015 ; 6 : 6221. [CrossRef] [PubMed] [Google Scholar]
  32. Lino Cardenas CL, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGF beta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013 ; 9 : e1003291. [CrossRef] [PubMed] [Google Scholar]
  33. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010 ; 70 : 5923–5930. [Google Scholar]
  34. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013 ; 31 : 577. [CrossRef] [PubMed] [Google Scholar]
  35. Nguyen DD, Chang S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci 2017 ; 19 : [Google Scholar]
  36. Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol 2012 ; 199 : 407–412. [CrossRef] [PubMed] [Google Scholar]
  37. Gilot D, Migault M, Bachelot L, et al. A non-coding function of TYRP1 mRNA promotes melanoma growth. Nat Cell Biol 2017 ; 19 : 1348–1357. [CrossRef] [PubMed] [Google Scholar]
  38. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008 ; 452 : 896–899. [CrossRef] [PubMed] [Google Scholar]
  39. van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 2014 ; 111 : 53–59. [CrossRef] [PubMed] [Google Scholar]
  40. Ottosen S, Parsley TB, Yang L, et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2015 ; 59 : 599–608. [CrossRef] [PubMed] [Google Scholar]
  41. Matthes E, Goepp J, Carlile GW, et al. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Br J Pharmacol 2016 ; 173 : 459–470. [CrossRef] [PubMed] [Google Scholar]
  42. Ruffin M, Voland M, Marie S, et al. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochim Biophys Acta 2013 ; 1832 : 2340–2351. [CrossRef] [PubMed] [Google Scholar]
  43. Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 2010 ; 184 : 1702–1709. [CrossRef] [PubMed] [Google Scholar]
  44. Megiorni F, Cialfi S, Dominici C, et al. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One 2011 ; 6 : e26601. [CrossRef] [PubMed] [Google Scholar]
  45. Megiorni F, Cialfi S, Cimino G, et al. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros 2013 ; 12 : 797–802. [CrossRef] [PubMed] [Google Scholar]
  46. Tazi MF, Dakhlallah DA, Caution K, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy 2016 ; 12 : 2026–2037. [CrossRef] [PubMed] [Google Scholar]
  47. Tsuchiya M, Kalurupalle S, Kumar P, et al. RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF. RNA Biol 2016 ; 13 : 837–847. [Google Scholar]
  48. Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal microRNA-199a-5p. Am J Pathol 2016 ; 186 : 2921–2933. [CrossRef] [PubMed] [Google Scholar]
  49. Lutful Kabir F, Ambalavanan N, Liu G, et al. microRNA-145 antagonism reverses TGF-beta inhibition of F508del CFTR correction in airway epithelia. Am J Respir Crit Care Med 2018; 197 : 632–443. [CrossRef] [PubMed] [Google Scholar]
  50. Bartoszewska S, Kamysz W, Jakiela B, et al. miR-200b downregulates CFTR during hypoxia in human lung epithelial cells. Cell Mol Biol Lett 2017 ; 22 : 23. [Google Scholar]
  51. Fressigné L, Simard MJ. La biogenèse des ARN courts non codants chez les animaux. Med Sci (Paris) 2018 ; 34 : 137–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.