Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 554 - 562 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183406015 | |
Publié en ligne | 31 juillet 2018 |
- Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
- Farrel P, Le Marechal C, Ferec C, et al. Discovery of the principal cystic fibrosis mutation (F508del) in ancient DNA from iron age Europeans. Nature Precedings 2007. http://hdl.handle.net/10101/npre.2007.1276.1. [Google Scholar]
- O’Connor GT, Quinton HB, Kahn R, et al. Case-mix adjustment for evaluation of mortality in cystic fibrosis. Pediatr Pulmonol 2002 ; 33 : 99–105. [CrossRef] [PubMed] [Google Scholar]
- Jun I, Cheng MH, Sim E, et al. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels. J Physiol 2016 ; 594 : 2929–2955. [CrossRef] [PubMed] [Google Scholar]
- Tabary O, Zahm JM, Hinnrasky J, et al. Selective up-regulation of chemokine IL-8 expression in cystic fibrosis bronchial gland cells in vivo and in vitro. Am J Pathol 1998 ; 153 : 921–930. [CrossRef] [PubMed] [Google Scholar]
- Benedetto R, Ousingsawat J, Wanitchakool P, et al. Epithelial chloride transport by CFTR requires TMEM16A. Sci Rep 2017 ; 7 : 12397. [CrossRef] [PubMed] [Google Scholar]
- Foster PS, Plank M, Collison A, et al. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev 2013 ; 253 : 198–215. [CrossRef] [PubMed] [Google Scholar]
- Sonneville F, Ruffin M, Guillot L, et al. New insights about miRNAs in cystic fibrosis. Am J Pathol 2015 ; 185 : 897–908. [CrossRef] [PubMed] [Google Scholar]
- Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014 ; 42 : D68–D73. [CrossRef] [PubMed] [Google Scholar]
- Mercey O, Popa A, Cavard A, et al. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett 2017 ; 591 : 693–705. [CrossRef] [PubMed] [Google Scholar]
- Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009 ; 19 : 92–105. [CrossRef] [PubMed] [Google Scholar]
- Marcorelles P, Montier T, Gillet D, et al. Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol 2007 ; 42 : 1032–1040. [CrossRef] [PubMed] [Google Scholar]
- Viart V, Bergougnoux A, Bonini J, et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J 2015 ; 45 : 116–128. [CrossRef] [PubMed] [Google Scholar]
- Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in DeltaF508 cystic fibrosis airway epithelium. J Immunol 2013 ; 190 : 3354–3362. [CrossRef] [PubMed] [Google Scholar]
- Ramachandran S, Karp PH, Osterhaus SR, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 2013 ; 49 : 544–551. [CrossRef] [PubMed] [Google Scholar]
- Ramachandran S, Karp PH, Jiang P, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 2012 ; 109 : 13362–13367. [CrossRef] [Google Scholar]
- Gillen AE, Gosalia N, Leir SH, Harris A MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 2011 ; 438 : 25–32. [CrossRef] [PubMed] [Google Scholar]
- Kim K, Hung RJ, Perrimon N. miR-263a regulates ENaC to maintain osmotic and intestinal stem cell homeostasis in Drosophila. Dev Cell 2017 ; 40 : 23–36. [CrossRef] [PubMed] [Google Scholar]
- Sonneville F, Ruffin M, Coraux C, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun 2017 ; 8 : 710. [CrossRef] [PubMed] [Google Scholar]
- Zhong T, Perelman JM, Kolosov VP, Zhou XD. MiR-146a negatively regulates neutrophil elastase-induced MUC5AC secretion from 16HBE human bronchial epithelial cells. Mol Cell Biochem 2011 ; 358 : 249–255. [CrossRef] [PubMed] [Google Scholar]
- Hassan F, Nuovo GJ, Crawford M, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 2012 ; 7 : e50837. [CrossRef] [PubMed] [Google Scholar]
- Fabbri E, Borgatti M, Montagner G, et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol 2014 ; 50 : 1144–1155. [CrossRef] [PubMed] [Google Scholar]
- McKiernan PJ, Cunningham O, Greene CM, Cryan SA. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 2013 ; 8 : 3907–3915. [Google Scholar]
- Oglesby IK, Vencken SF, Agrawal R, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015 ; 46 : 1350–1360. [CrossRef] [PubMed] [Google Scholar]
- Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 2011 ; 286 : 11604–11615. [CrossRef] [PubMed] [Google Scholar]
- Marcet B, Chevalier B, Luxardi G, et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol 2011 ; 13 : 693–699. [CrossRef] [PubMed] [Google Scholar]
- Chevalier B, Adamiok A, Mercey O, et al. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat Commun 2015 ; 6 : 8386. [CrossRef] [PubMed] [Google Scholar]
- Stolzenburg LR, Wachtel S, Dang H, Harris A. miR-1343 attenuates pathways of fibrosis by targeting the TGF-beta receptors. Biochem J 2016 ; 473 : 245–256. [CrossRef] [PubMed] [Google Scholar]
- Fabbri E, Tamanini A, Jakova T, et al. A peptide nucleic acid against microRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules 2017 ; 23 : [Google Scholar]
- Weldon S, McNally P, McAuley DF, et al. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 2014 ; 190 : 165–174. [CrossRef] [PubMed] [Google Scholar]
- Zhang PX, Cheng J, Zou S, et al. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015 ; 6 : 6221. [CrossRef] [PubMed] [Google Scholar]
- Lino Cardenas CL, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGF beta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013 ; 9 : e1003291. [CrossRef] [PubMed] [Google Scholar]
- Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010 ; 70 : 5923–5930. [Google Scholar]
- Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013 ; 31 : 577. [CrossRef] [PubMed] [Google Scholar]
- Nguyen DD, Chang S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci 2017 ; 19 : [Google Scholar]
- Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol 2012 ; 199 : 407–412. [CrossRef] [PubMed] [Google Scholar]
- Gilot D, Migault M, Bachelot L, et al. A non-coding function of TYRP1 mRNA promotes melanoma growth. Nat Cell Biol 2017 ; 19 : 1348–1357. [CrossRef] [PubMed] [Google Scholar]
- Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008 ; 452 : 896–899. [CrossRef] [PubMed] [Google Scholar]
- van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 2014 ; 111 : 53–59. [CrossRef] [PubMed] [Google Scholar]
- Ottosen S, Parsley TB, Yang L, et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 2015 ; 59 : 599–608. [CrossRef] [PubMed] [Google Scholar]
- Matthes E, Goepp J, Carlile GW, et al. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). Br J Pharmacol 2016 ; 173 : 459–470. [CrossRef] [PubMed] [Google Scholar]
- Ruffin M, Voland M, Marie S, et al. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochim Biophys Acta 2013 ; 1832 : 2340–2351. [CrossRef] [PubMed] [Google Scholar]
- Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 2010 ; 184 : 1702–1709. [CrossRef] [PubMed] [Google Scholar]
- Megiorni F, Cialfi S, Dominici C, et al. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One 2011 ; 6 : e26601. [CrossRef] [PubMed] [Google Scholar]
- Megiorni F, Cialfi S, Cimino G, et al. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros 2013 ; 12 : 797–802. [CrossRef] [PubMed] [Google Scholar]
- Tazi MF, Dakhlallah DA, Caution K, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy 2016 ; 12 : 2026–2037. [CrossRef] [PubMed] [Google Scholar]
- Tsuchiya M, Kalurupalle S, Kumar P, et al. RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF. RNA Biol 2016 ; 13 : 837–847. [Google Scholar]
- Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal microRNA-199a-5p. Am J Pathol 2016 ; 186 : 2921–2933. [CrossRef] [PubMed] [Google Scholar]
- Lutful Kabir F, Ambalavanan N, Liu G, et al. microRNA-145 antagonism reverses TGF-beta inhibition of F508del CFTR correction in airway epithelia. Am J Respir Crit Care Med 2018; 197 : 632–443. [CrossRef] [PubMed] [Google Scholar]
- Bartoszewska S, Kamysz W, Jakiela B, et al. miR-200b downregulates CFTR during hypoxia in human lung epithelial cells. Cell Mol Biol Lett 2017 ; 22 : 23. [Google Scholar]
- Fressigné L, Simard MJ. La biogenèse des ARN courts non codants chez les animaux. Med Sci (Paris) 2018 ; 34 : 137–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.