Free Access
Issue
Med Sci (Paris)
Volume 34, Number 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
Page(s) 547 - 553
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183406014
Published online 31 July 2018
  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961 ; 25 : 585–621. [CrossRef] [PubMed] [Google Scholar]
  2. He S, Sharpless NE. Senescence in health and disease. Cell 2017 ; 169 : 1000–1011. [CrossRef] [PubMed] [Google Scholar]
  3. Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017 ; 16 : 718–735. [CrossRef] [PubMed] [Google Scholar]
  4. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008 ; 6 : 2853–2868. [PubMed] [Google Scholar]
  5. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014 ; 15 : 482–496. [CrossRef] [PubMed] [Google Scholar]
  6. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018. [Google Scholar]
  7. Vicente R, Mausset-Bonnefont AL, Jorgensen C, et al. Cellular senescence impact on immune cell fate and function. Aging Cell 2016 ; 15 : 400–406. [CrossRef] [PubMed] [Google Scholar]
  8. Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014 ; 31 : 722–733. [CrossRef] [PubMed] [Google Scholar]
  9. Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife 2015; 4. [Google Scholar]
  10. Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017 ; 23 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  11. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017 ; 23 : 1072–1079. [CrossRef] [PubMed] [Google Scholar]
  12. García-Prat L, Martínez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016 ; 529 : 37–42. [CrossRef] [PubMed] [Google Scholar]
  13. Childs BG, Baker DJ, Wijshake T, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016 ; 354 : 472–477. [CrossRef] [Google Scholar]
  14. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016 ; 530 : 184–189. [CrossRef] [PubMed] [Google Scholar]
  15. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011 ; 479 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  16. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008 ; 58 : 26–35. [CrossRef] [Google Scholar]
  17. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone 2012 ; 51 : 249–257. [CrossRef] [PubMed] [Google Scholar]
  18. Yu D, Xu J, Liu F, et al. Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis. Clin Exp Rheumatol 2016 ; 34 : 929–934. [PubMed] [Google Scholar]
  19. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992 ; 2 : 285–289. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Bass E, French DD, Bradham DD, Rubenstein LZ. Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann Epidemiol 2007 ; 17 : 514–519. [CrossRef] [PubMed] [Google Scholar]
  21. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research. J Bone Miner Res 2007 ; 22 : 1479–1491. [CrossRef] [PubMed] [Google Scholar]
  22. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res 2014 ; 29 : 1–23. [CrossRef] [PubMed] [Google Scholar]
  23. Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res 2016 ; 31 : 1920–1929. [CrossRef] [PubMed] [Google Scholar]
  24. Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 2018 ; 22 : 930–940. [CrossRef] [PubMed] [Google Scholar]
  25. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015 ; 14 : 644–658. [CrossRef] [PubMed] [Google Scholar]
  26. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017 ; 8 : 422. [CrossRef] [PubMed] [Google Scholar]
  27. Kochetkova EY, Blinova GI, Bystrova OA, et al. Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY) 2017 ; 9 : 2352–2375. [Google Scholar]
  28. Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017 ; 169 : 132–147.e16. [CrossRef] [PubMed] [Google Scholar]
  29. Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016 ; 22 : 78–83. [CrossRef] [PubMed] [Google Scholar]
  30. Yosef R, Pilpel N, Tokarsky-Amiel R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016 ; 7 : 11190. [CrossRef] [PubMed] [Google Scholar]
  31. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016 ; 15 : 428–435. [CrossRef] [PubMed] [Google Scholar]
  32. Pan J, Li D, Xu Y, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys 2017 ; 99 : 353–361. [CrossRef] [PubMed] [Google Scholar]
  33. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006 ; 354 : 2531–2541. [CrossRef] [PubMed] [Google Scholar]
  34. Dörr JR, Yu Y, Milanovic M, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 2013 ; 501 : 421–425. [CrossRef] [PubMed] [Google Scholar]
  35. McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014 ; 22 : 363–388. [CrossRef] [PubMed] [Google Scholar]
  36. Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010 ; 11 : 1149–1159. [CrossRef] [PubMed] [Google Scholar]
  37. Goy E, Abbadie C. Sénescence et cancer : double jeu. Med Sci (Paris) 2018 ; 34 : 223–230. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Chauvet V, Jouaville S, Garbez N, Martins I. L’élimination des cellules sénescentes : vers un avenir meilleur ?. Med Sci (Paris) 2016 ; 32 : 1030–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.