Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 6-7, Juin–Juillet 2018
Les Cahiers de Myologie
Page(s) 547 - 553
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183406014
Publié en ligne 31 juillet 2018
  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961 ; 25 : 585–621. [CrossRef] [PubMed] [Google Scholar]
  2. He S, Sharpless NE. Senescence in health and disease. Cell 2017 ; 169 : 1000–1011. [CrossRef] [PubMed] [Google Scholar]
  3. Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017 ; 16 : 718–735. [CrossRef] [PubMed] [Google Scholar]
  4. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008 ; 6 : 2853–2868. [CrossRef] [PubMed] [Google Scholar]
  5. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014 ; 15 : 482–496. [CrossRef] [PubMed] [Google Scholar]
  6. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018. [Google Scholar]
  7. Vicente R, Mausset-Bonnefont AL, Jorgensen C, et al. Cellular senescence impact on immune cell fate and function. Aging Cell 2016 ; 15 : 400–406. [CrossRef] [PubMed] [Google Scholar]
  8. Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014 ; 31 : 722–733. [CrossRef] [PubMed] [Google Scholar]
  9. Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife 2015; 4. [Google Scholar]
  10. Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017 ; 23 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  11. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017 ; 23 : 1072–1079. [CrossRef] [PubMed] [Google Scholar]
  12. García-Prat L, Martínez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016 ; 529 : 37–42. [CrossRef] [PubMed] [Google Scholar]
  13. Childs BG, Baker DJ, Wijshake T, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016 ; 354 : 472–477. [CrossRef] [PubMed] [Google Scholar]
  14. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016 ; 530 : 184–189. [CrossRef] [PubMed] [Google Scholar]
  15. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011 ; 479 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  16. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008 ; 58 : 26–35. [CrossRef] [Google Scholar]
  17. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone 2012 ; 51 : 249–257. [CrossRef] [PubMed] [Google Scholar]
  18. Yu D, Xu J, Liu F, et al. Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis. Clin Exp Rheumatol 2016 ; 34 : 929–934. [PubMed] [Google Scholar]
  19. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992 ; 2 : 285–289. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Bass E, French DD, Bradham DD, Rubenstein LZ. Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann Epidemiol 2007 ; 17 : 514–519. [CrossRef] [PubMed] [Google Scholar]
  21. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research. J Bone Miner Res 2007 ; 22 : 1479–1491. [CrossRef] [PubMed] [Google Scholar]
  22. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res 2014 ; 29 : 1–23. [CrossRef] [PubMed] [Google Scholar]
  23. Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res 2016 ; 31 : 1920–1929. [CrossRef] [PubMed] [Google Scholar]
  24. Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 2018 ; 22 : 930–940. [CrossRef] [PubMed] [Google Scholar]
  25. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015 ; 14 : 644–658. [CrossRef] [PubMed] [Google Scholar]
  26. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017 ; 8 : 422. [CrossRef] [PubMed] [Google Scholar]
  27. Kochetkova EY, Blinova GI, Bystrova OA, et al. Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY) 2017 ; 9 : 2352–2375. [Google Scholar]
  28. Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017 ; 169 : 132–147.e16. [CrossRef] [PubMed] [Google Scholar]
  29. Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016 ; 22 : 78–83. [CrossRef] [PubMed] [Google Scholar]
  30. Yosef R, Pilpel N, Tokarsky-Amiel R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016 ; 7 : 11190. [CrossRef] [PubMed] [Google Scholar]
  31. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016 ; 15 : 428–435. [CrossRef] [PubMed] [Google Scholar]
  32. Pan J, Li D, Xu Y, et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys 2017 ; 99 : 353–361. [CrossRef] [PubMed] [Google Scholar]
  33. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006 ; 354 : 2531–2541. [CrossRef] [PubMed] [Google Scholar]
  34. Dörr JR, Yu Y, Milanovic M, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 2013 ; 501 : 421–425. [CrossRef] [PubMed] [Google Scholar]
  35. McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014 ; 22 : 363–388. [CrossRef] [PubMed] [Google Scholar]
  36. Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010 ; 11 : 1149–1159. [CrossRef] [PubMed] [Google Scholar]
  37. Goy E, Abbadie C. Sénescence et cancer : double jeu. Med Sci (Paris) 2018 ; 34 : 223–230. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Chauvet V, Jouaville S, Garbez N, Martins I. L’élimination des cellules sénescentes : vers un avenir meilleur ?. Med Sci (Paris) 2016 ; 32 : 1030–1033. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.