Free Access
Med Sci (Paris)
Volume 34, Number 5, Mai 2018
Page(s) 480 - 484
Section Prix Nobel
Published online 13 June 2018
  1. Pittendrigh CS. On temporal organization in living systems. Harvey Lect 1961 ; 56 : 93–125. [Google Scholar]
  2. Jouvin Marche E. Jules Hoffmann, un « grand monsieur ». Med Sci (Paris) 2011; 27 : 1025–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Rouyer F. Clock genes: from Drosophila to humans. Bull Acad Natl Med 2015 ; 199 : 1115–1131. [PubMed] [Google Scholar]
  4. De Mairan J. Observation botanique. Hist Acad Roy Sci 1729; 35–36. [Google Scholar]
  5. Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 1993 ; 55 : 16–54. [CrossRef] [PubMed] [Google Scholar]
  6. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971 ; 68 : 2112–2116. [CrossRef] [Google Scholar]
  7. Rosbash M. A 50-year personal journey: location, gene expression, and circadian rhythms. Cold Spring Harb Perspect Biol 2017 ; 9 : a032516. [CrossRef] [PubMed] [Google Scholar]
  8. Rosbash M. Life is an N of 1. Cell 2017 ; 171 : 1241–1245. [CrossRef] [PubMed] [Google Scholar]
  9. Young MW. As time flew by. Cell 2017 ; 171 : 1236–1240. [CrossRef] [PubMed] [Google Scholar]
  10. Bargiello TA, Jackson FR, Young MW. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 1984 ; 312 : 752–754. [CrossRef] [PubMed] [Google Scholar]
  11. Reddy P, Zehring WA, Wheeler DA, et al. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 1984 ; 38 : 701–710. [CrossRef] [PubMed] [Google Scholar]
  12. Zehring WA, Wheeler DA, Reddy P, et al. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 1984 ; 39 : 369–376. [CrossRef] [PubMed] [Google Scholar]
  13. Jackson FR, Bargiello TA, Yun SH, Young MW. Product of per locus of Drosophila shares homology with proteoglycans. Nature 1986 ; 320 : 185–188. [CrossRef] [PubMed] [Google Scholar]
  14. Reddy P, Jacquier AC, Abovich N, et al. The period clock locus of D. melanogaster codes for a proteoglycan. Cell 1986 ; 46 : 53–61. [CrossRef] [PubMed] [Google Scholar]
  15. Crews ST, Thomas JB, Goodman CS. The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 1988 ; 52 : 143–151. [CrossRef] [PubMed] [Google Scholar]
  16. Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 1990 ; 343 : 536–540. [CrossRef] [PubMed] [Google Scholar]
  17. Hardin PE, Hall JC, Rosbash M. Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci USA 1992 ; 89 : 11711–11715. [CrossRef] [Google Scholar]
  18. Zeng H, Hardin PE, Rosbash M. Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J 1994 ; 13 : 3590–3598. [PubMed] [Google Scholar]
  19. Sehgal A, Price JL, Man B, Young MW. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 1994 ; 263 : 1603–1606. [CrossRef] [Google Scholar]
  20. Vosshall LB, Price JL, Sehgal A, Saez L, Young MW. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 1994 ; 263 : 1606–1609. [CrossRef] [Google Scholar]
  21. Gekakis N, Saez L, Delahaye-Brown AM, et al. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 1995 ; 270 : 811–815. [CrossRef] [Google Scholar]
  22. Price JL, Dembinska ME, Young MW, Rosbash M. Suppression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J 1995 ; 14 : 4044–4049. [PubMed] [Google Scholar]
  23. Zwiebel LJ, Hardin PE, Liu X, et al. A post-transcriptional mechanism contributes to circadian cycling of a per-beta-galactosidase fusion protein. Proc Natl Acad Sci USA 1991 ; 88 : 3882–3886. [CrossRef] [Google Scholar]
  24. Price JL, Blau J, Rothenfluh A, et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998 ; 94 : 83–95. [CrossRef] [PubMed] [Google Scholar]
  25. Kloss B, Price JL, Saez L, et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 1998 ; 94 : 97–107. [CrossRef] [PubMed] [Google Scholar]
  26. Shearman LP, Zylka MJ, Weaver DR, et al. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997 ; 19 : 1261–1269. [CrossRef] [PubMed] [Google Scholar]
  27. Sun ZS, Albrecht U, Zhuchenko O, et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997 ; 90 : 1003–1011. [CrossRef] [PubMed] [Google Scholar]
  28. Tei H, Okamura H, Shigeyoshi Y, et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 1997 ; 389 : 512–516. [CrossRef] [PubMed] [Google Scholar]
  29. Vitaterna MH, King DP, Chang AM, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994 ; 264 : 719–725. [CrossRef] [Google Scholar]
  30. Allada R, White NE, So WV, et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998 ; 93 : 791–804. [CrossRef] [PubMed] [Google Scholar]
  31. Rutila JE, Suri V, Le M, et al. Cycle is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998 ; 93 : 805–814. [CrossRef] [PubMed] [Google Scholar]
  32. Gekakis N, Staknis D, Nguyen HB, et al. Role of the Clock protein in the mammalian circadian mechanism. Science 1998 ; 280 : 1564–1569. [CrossRef] [Google Scholar]
  33. Hall JC. (interviewed by M. Koch). A Nobel pursuit may not run like clockwork. Cell 2017 ; 171 : 1246–1251. [CrossRef] [PubMed] [Google Scholar]
  34. Emery P, So WV, Kaneko M, et al. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998 ; 95 : 669–679. [CrossRef] [PubMed] [Google Scholar]
  35. Saez L, Young MW. In situ localization of the per clock protein during development of Drosophila melanogaster. Mol Cell Biol 1988 ; 8 : 5378–5385. [CrossRef] [PubMed] [Google Scholar]
  36. Siwicki KK, Eastman C, Petersen G, et al. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1988 ; 1 : 141–150. [CrossRef] [PubMed] [Google Scholar]
  37. Nitabach MN, Taghert PH. Organization of the Drosophila circadian control circuit. Curr Biol 2008 ; 18 : R84–R93. [CrossRef] [PubMed] [Google Scholar]
  38. Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 2014 ; 40 : 80–101. [CrossRef] [PubMed] [Google Scholar]
  39. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016 ; 354 : 1004–1008. [CrossRef] [Google Scholar]
  40. Ballesta A, Innominato PF, Dallmann R, et al. Systems chronotherapeutics. Pharmacol Rev 2017 ; 69 : 161–199. [CrossRef] [PubMed] [Google Scholar]
  41. Hoyle NP, Seinkmane E, Putker M, et al. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 2017; 9 : eaal2774. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.