Free Access
Issue |
Med Sci (Paris)
Volume 34, Number 4, Avril 2018
|
|
---|---|---|
Page(s) | 326 - 330 | |
Section | Revues | |
DOI | https://doi.org/10.1051/medsci/20183404013 | |
Published online | 16 April 2018 |
- Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20 : 353-71. [CrossRef] [PubMed] [Google Scholar]
- Blackhall LJ. Amyotrophic lateral sclerosis and palliative care: where we are, and the road ahead. Muscle Nerve 2012; 45 : 311-8. [Google Scholar]
- Tortarolo M, Lo Coco D, Veglianese P, et al. Amyotrophic lateral sclerosis, a multisystem pathology: insights into the role of TNFα. Mediators Inflamm 2017; 2017 : 2985051. [Google Scholar]
- Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2016; 577 : 109-18. [Google Scholar]
- Blitterswijk M van, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol 2012; 25 : 689-700. [CrossRef] [PubMed] [Google Scholar]
- Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into disease mechanisms and therapeutic targets. Neurother J Am Soc Exp Neurother 2015; 12 : 352-63. [Google Scholar]
- Riggs JE. Aging, increasing genomic entropy, and neurodegenerative disease. Neurol Clin 1998; 16 : 757-70. [CrossRef] [PubMed] [Google Scholar]
- Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158 : 78-88. [CrossRef] [PubMed] [Google Scholar]
- Warburg O. On the origin of cancer cells. Science 1956; 123 : 309-14. [Google Scholar]
- Valbuena GN, Rizzardini M, Cimini S, et al. Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol Neurobiol 2016; 53 : 2222-40. [CrossRef] [PubMed] [Google Scholar]
- Salinas PC. Wnt signaling in the vertebrate central nervous system: From axon guidance to synaptic function. Cold Spring Harb Perspect Biol 2012; 4. [Google Scholar]
- Marchetti B, Pluchino S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 2013; 19 : 144-56. [Google Scholar]
- Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and canonical Wnt/betacatenin pathway in amyotrophic lateral sclerosis. Front Neurol 2016; 7 : 100. [Google Scholar]
- Vallée A, Vallée J-N, Guillevin R, et al. Interactions between the canonical WNT/Beta-catenin pathway and PPAR gamma on neuroinflammation, demyelination, and remyelination in multiple sclerosis. Cell Mol Neurobiol 2017; doi: 10.1007/s10571-017-0550-9. [Google Scholar]
- Vallée A, Lecarpentier Y. Alzheimer disease: Crosstalk between the canonical Wnt/Beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 2016; 10 : 459. [Google Scholar]
- Li Q, Spencer NY, Pantazis NJ, et al. Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem 2011; 286 : 40151-62. [CrossRef] [PubMed] [Google Scholar]
- Ma B, Hottiger MO. Crosstalk between WNT/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 2016; 7 : 378. [PubMed] [Google Scholar]
- Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10 : 468-77. [CrossRef] [PubMed] [Google Scholar]
- Clevers H, Nusse R. WNT/β-catenin signaling and disease. Cell 2012; 149 : 1192-205. [Google Scholar]
- Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem 2008; 283 : 21427-32. [CrossRef] [PubMed] [Google Scholar]
- Niida A, Hiroko T, Kasai M, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004; 23 : 8520-6. [Google Scholar]
- Ambacher KK, Pitzul KB, Karajgikar M, et al. The JNK-and AKT/GSK3β- signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 2012; 7 : e46885. [Google Scholar]
- Chen Y, Guan Y, Liu H, et al. Activation of the WNT/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem. Biophys. Res Commun 2012; 420 : 397-403. [Google Scholar]
- Chen Y, Guan Y, Zhang Z, et al. Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res 2012; 34 : 390-9. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Guan Y, Chen Y, et al. Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol Lett 2013; 35 : 1199-1207. [Google Scholar]
- Yang S-H, Li W, Sumien N, et al. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2017; 157 : 273-91. [CrossRef] [PubMed] [Google Scholar]
- Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14 : 724-38. [CrossRef] [PubMed] [Google Scholar]
- Schurr A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 2014; 8 : 360. [PubMed] [Google Scholar]
- Bauernfeind AL, Barks SK, Duka T, et al. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2014; 219 : 1149-1167. [Google Scholar]
- Obel LF, Müller MS, Walls AB, et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 2012; 4 : 3. [PubMed] [Google Scholar]
- Patel AB, Lai JCK, Chowdhury GMI, et al. Direct evidence for activitydependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA 2014; 111 : 5385-90. [CrossRef] [Google Scholar]
- Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosc 2013; 7 : 38. [CrossRef] [Google Scholar]
- Bratic A, Larsson N-G. The role of mitochondria in aging. J Clin Invest 2013; 123 : 951-7. [CrossRef] [PubMed] [Google Scholar]
- Roche TE, Baker JC, Yan X, et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 2001; 70 : 33-75. [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Hulver MW, McMillan RP, et al. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab 2014; 11 : 10. [Google Scholar]
- Lee I-K. The role of pyruvate dehydrogenase kinase in diabetes and obesity. Diabetes Metab J 2014; 38 : 181-6. [CrossRef] [PubMed] [Google Scholar]
- Vallée A, Lecarpentier Y, Guillevin R, et al. Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci MN 2017; 62 : 368-79. [CrossRef] [Google Scholar]
- Vallée A, Lecarpentier Y, Guillevin R, et al. Thermodynamics in gliomas: Interactions between the canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol 2017; 8 : 352. [CrossRef] [PubMed] [Google Scholar]
- Vallée A, Guillevin R, Vallée J-N. Vasculogenesis and angiogenesis initiation under normoxic conditions through WNT/β-catenin pathway in gliomas. Rev Neurosci 2017; 29 : 71-91. [Google Scholar]
- Yue X, Lan F, Yang W, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 2010; 1366 : 27-37. [Google Scholar]
- Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 2011; 76 : 347-53. [CrossRef] [PubMed] [Google Scholar]
- McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 2004; 490 : 13-24. [CrossRef] [PubMed] [Google Scholar]
- Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452 : 230-3. [Google Scholar]
- Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011; 42 : 719-30. [Google Scholar]
- Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150 : 685-96. [Google Scholar]
- Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105 : 18782-7. [CrossRef] [Google Scholar]
- Tefera TW, Tan KN, McDonald TS, et al. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis. Neurochem Res 2017; 42 : 1610-20. [Google Scholar]
- Browne SE, Yang L, DiMauro J-P, et al. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol Dis 2006; 22 : 599-610. [CrossRef] [PubMed] [Google Scholar]
- Xie T, Deng L, Mei P, et al. Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol. Aging 2014; 35 : 1778.e9-1778.e23. [Google Scholar]
- Kim JE, Hong YH, Kim JY, et al. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PloS One 2017; 12 : e0176462. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.