Free Access
Issue
Med Sci (Paris)
Volume 34, Number 4, Avril 2018
Page(s) 331 - 337
Section Revues
DOI https://doi.org/10.1051/medsci/20183404014
Published online 16 April 2018
  1. Charles MA, Delpierre C, Bréant B. Le concept des origines développementales de la santé : évolution sur trois décennies. Med Sci (Paris) 2016; 32 : 15-20. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31 : 363-73. [CrossRef] [PubMed] [Google Scholar]
  3. Drisse MNB. Environnements précoces, origines précoces de la santé et des maladies. Med Sci (Paris) 2016; 32 : 9-10. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev 2016; 96 : 1509-65. [Google Scholar]
  5. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14 : e1002533. [Google Scholar]
  6. Hooks KB, O’Malley MA. Dysbiosis and its discontents. mBio 2017; 8 : e01492-17. [Google Scholar]
  7. Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev 2010; 90 : 859-904. [Google Scholar]
  8. Sokol H, Galperine T, Kapel N, et al. Faecal microbiota transplantation in recurrent Clostridium difficile infection: recommendations from the French group of faecal microbiota transplantation. Dig Liver Dis 2016; 48 : 242-7. [Google Scholar]
  9. Bakker GJ, Nieuwdorp M. Fecal microbiota transplantation: therapeutic potential for a multitude of diseases beyond Clostridium difficile. Microbiol Spectr 2017; 5. doi: 10.1128/microbiolspec. BAD-0008-2017. [Google Scholar]
  10. Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes. Nat Med 2016; 22 : 713-22. [CrossRef] [PubMed] [Google Scholar]
  11. Indrio F, Martini S, Francavilla R, et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr 2017; 5 : 178. [CrossRef] [PubMed] [Google Scholar]
  12. Meropol SB, Edwards A. Development of the infant intestinal microbiome: a bird’s eye view of a complex process. Birth Defects Res C Embryo Today 2015; 105 : 228-39. [CrossRef] [PubMed] [Google Scholar]
  13. Tun HM, Konya T, Takaro TK, et al. Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios. Microbiome 2017; 5 : 40. [Google Scholar]
  14. Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol 2008; 159 : 187-93. [Google Scholar]
  15. Chimura T, Hirayama T, Morisaki N, et al. Comparisons of the bacterial flora in genital regions at non-pregnancy. Jpn J Antibiot 1992; 45 : 1065-70. [PubMed] [Google Scholar]
  16. Duff P, Gibbs RS, Blanco JD, et al. Endometrial culture techniques in puerperal patients. Obstet Gynecol 1983; 61 : 217-22. [PubMed] [Google Scholar]
  17. Møller BR, Kristiansen FV, Thorsen P, et al. Sterility of the uterine cavity. Acta Obstet Gynecol Scand 1995; 74 : 216-9. [CrossRef] [Google Scholar]
  18. Verstraelen H, Vilchez-Vargas R, Desimpel F, et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ 2016; 4 : e1602. [Google Scholar]
  19. Moreno I, Codoñer FM, Vilella F, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215 : 684-703. [Google Scholar]
  20. Mitchell CM, Haick A, Nkwopara E, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol 2015; 212 : 611.e1-9. [Google Scholar]
  21. Schlievert P, Larsen B, Johnson W, et al. Bacterial growth inhibition by amniotic fluid. III. Demonstration of the variability of bacterial growth inhibition by amniotic fluid with a new platecount technique. Am J Obstet Gynecol 1975; 122 : 809-19. [Google Scholar]
  22. Bearfield C, Davenport ES, Sivapathasundaram V, et al. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 2002; 109 : 527-33. [Google Scholar]
  23. Miller Jr JM, Pupkin MJ, Hill GB. Bacterial colonization of amniotic fluid from intact fetal membranes. Am J Obstet Gynecol 1980; 136 : 796-804. [Google Scholar]
  24. Seong HS, Lee SE, Kang JH, et al. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol 2008; 199 : 375.e1-5. [Google Scholar]
  25. Oyarzún E, Yamamoto M, Katoa S, et al. Specific detection of 16 microorganisms in amniotic fluid by polymerase chain reaction and its correlation with preterm delivery occurrence. Am J Obstet Gynecol 1998; 179 : 1115-9. [Google Scholar]
  26. Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6 : 23129. [Google Scholar]
  27. Pettker CM, Buhimschi IA, Magloire LK, et al. Value of placental microbial evaluation in diagnosing intra-amniotic infection. Obstet Gynecol 2007; 109 : 739-49. [Google Scholar]
  28. Jones HE, Harris KA, Azizia M, et al. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor. PloS One 2009; 4 : e8205. [Google Scholar]
  29. Stout MJ, Conlon B, Landeau M, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 2013; 208 : 226.e1-7. [Google Scholar]
  30. Jiménez E, Fernàndez L, Marín ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 2005; 51 : 270-4. [Google Scholar]
  31. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6 : 237ra65. [Google Scholar]
  32. Doyle RM, Alber DG, Jones HE, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 2014; 35 : 1099-101. [Google Scholar]
  33. Parnell LA, Briggs CM, Cao B, et al. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep 2017; 7 : 11200. [Google Scholar]
  34. Prince AL, Ma J, Kannan PS, et al. The placental microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol.2016; 214 : 627.e1-16. [Google Scholar]
  35. Barak S, Oettinger-Barak O, Machtei EE, et al. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol 2007; 78 : 670-6. [CrossRef] [PubMed] [Google Scholar]
  36. Zheng J, Xiao X, Zhang Q, et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 2015; 7 : 6924-37. [Google Scholar]
  37. Zheng J, Xiao X, Zhang Q, et al. Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget 2017; 8 : 82314-25. [Google Scholar]
  38. Zheng J, Xiao X, Zhang Q, et al. The placental microbiota is altered among subjects with gestational diabetes mellitus: A pilot study. Front Physiol 2017; 8 : 675. [Google Scholar]
  39. Bassols J, Serino M, Carreras-Badosa G, et al. Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatr Res 2016; 80 : 777-84. [Google Scholar]
  40. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the sterile womb and in utero colonization hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5 : 48. [Google Scholar]
  41. Kliman HJ. Comment on the placenta harbors a unique microbiome. Sci Transl Med 2014; 6 : 254le4. [Google Scholar]
  42. Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 2016; 4 : 29. [Google Scholar]
  43. Rautava S, Collado MC, Salminen S, et al. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 2012; 102 : 178-84. [CrossRef] [PubMed] [Google Scholar]
  44. Kavak SB, Kavak E, Ilhan R, et al. The efficacy of ampicillin and Lactobacillus casei rhamnosus in the active management of preterm premature rupture of membranes remote from term. Drug Des Devel Ther 2014; 8 : 1169-73. [CrossRef] [PubMed] [Google Scholar]
  45. Fiocchi A, Pawankar R, Cuello-Garcia C, et al. World allergy organizationmcmaster university guidelines for allergic disease prevention (GLAD-P): probiotics. World Allergy Organ J 2015; 8 : 4. [CrossRef] [PubMed] [Google Scholar]
  46. Guilloux CA, Lamoureux C, Héry-Arnaud G. Les bactéries anaérobies, ces inconnues du microbiote pulmonaire. Med Sci (Paris) 2018; 34 : 253-60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Junien C (coordination). Origine développementale de la santé et des maladies (DOHaD) : environnement et épigénétique. Med Sci (Paris) 2016; 32 : 3-130. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.