Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 4, Avril 2018
|
|
---|---|---|
Page(s) | 326 - 330 | |
Section | Revues | |
DOI | https://doi.org/10.1051/medsci/20183404013 | |
Publié en ligne | 16 avril 2018 |
- Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20 : 353-71. [CrossRef] [PubMed] [Google Scholar]
- Blackhall LJ. Amyotrophic lateral sclerosis and palliative care: where we are, and the road ahead. Muscle Nerve 2012; 45 : 311-8. [Google Scholar]
- Tortarolo M, Lo Coco D, Veglianese P, et al. Amyotrophic lateral sclerosis, a multisystem pathology: insights into the role of TNFα. Mediators Inflamm 2017; 2017 : 2985051. [Google Scholar]
- Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2016; 577 : 109-18. [Google Scholar]
- Blitterswijk M van, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol 2012; 25 : 689-700. [CrossRef] [PubMed] [Google Scholar]
- Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into disease mechanisms and therapeutic targets. Neurother J Am Soc Exp Neurother 2015; 12 : 352-63. [Google Scholar]
- Riggs JE. Aging, increasing genomic entropy, and neurodegenerative disease. Neurol Clin 1998; 16 : 757-70. [CrossRef] [PubMed] [Google Scholar]
- Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158 : 78-88. [CrossRef] [PubMed] [Google Scholar]
- Warburg O. On the origin of cancer cells. Science 1956; 123 : 309-14. [Google Scholar]
- Valbuena GN, Rizzardini M, Cimini S, et al. Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol Neurobiol 2016; 53 : 2222-40. [CrossRef] [PubMed] [Google Scholar]
- Salinas PC. Wnt signaling in the vertebrate central nervous system: From axon guidance to synaptic function. Cold Spring Harb Perspect Biol 2012; 4. [Google Scholar]
- Marchetti B, Pluchino S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 2013; 19 : 144-56. [Google Scholar]
- Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and canonical Wnt/betacatenin pathway in amyotrophic lateral sclerosis. Front Neurol 2016; 7 : 100. [Google Scholar]
- Vallée A, Vallée J-N, Guillevin R, et al. Interactions between the canonical WNT/Beta-catenin pathway and PPAR gamma on neuroinflammation, demyelination, and remyelination in multiple sclerosis. Cell Mol Neurobiol 2017; doi: 10.1007/s10571-017-0550-9. [Google Scholar]
- Vallée A, Lecarpentier Y. Alzheimer disease: Crosstalk between the canonical Wnt/Beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 2016; 10 : 459. [Google Scholar]
- Li Q, Spencer NY, Pantazis NJ, et al. Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem 2011; 286 : 40151-62. [CrossRef] [PubMed] [Google Scholar]
- Ma B, Hottiger MO. Crosstalk between WNT/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 2016; 7 : 378. [PubMed] [Google Scholar]
- Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10 : 468-77. [CrossRef] [PubMed] [Google Scholar]
- Clevers H, Nusse R. WNT/β-catenin signaling and disease. Cell 2012; 149 : 1192-205. [Google Scholar]
- Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem 2008; 283 : 21427-32. [CrossRef] [PubMed] [Google Scholar]
- Niida A, Hiroko T, Kasai M, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004; 23 : 8520-6. [Google Scholar]
- Ambacher KK, Pitzul KB, Karajgikar M, et al. The JNK-and AKT/GSK3β- signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 2012; 7 : e46885. [Google Scholar]
- Chen Y, Guan Y, Liu H, et al. Activation of the WNT/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem. Biophys. Res Commun 2012; 420 : 397-403. [Google Scholar]
- Chen Y, Guan Y, Zhang Z, et al. Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res 2012; 34 : 390-9. [CrossRef] [PubMed] [Google Scholar]
- Wang S, Guan Y, Chen Y, et al. Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol Lett 2013; 35 : 1199-1207. [Google Scholar]
- Yang S-H, Li W, Sumien N, et al. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol 2017; 157 : 273-91. [CrossRef] [PubMed] [Google Scholar]
- Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14 : 724-38. [CrossRef] [PubMed] [Google Scholar]
- Schurr A. Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 2014; 8 : 360. [PubMed] [Google Scholar]
- Bauernfeind AL, Barks SK, Duka T, et al. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 2014; 219 : 1149-1167. [Google Scholar]
- Obel LF, Müller MS, Walls AB, et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 2012; 4 : 3. [PubMed] [Google Scholar]
- Patel AB, Lai JCK, Chowdhury GMI, et al. Direct evidence for activitydependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA 2014; 111 : 5385-90. [CrossRef] [Google Scholar]
- Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosc 2013; 7 : 38. [CrossRef] [Google Scholar]
- Bratic A, Larsson N-G. The role of mitochondria in aging. J Clin Invest 2013; 123 : 951-7. [CrossRef] [PubMed] [Google Scholar]
- Roche TE, Baker JC, Yan X, et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 2001; 70 : 33-75. [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Hulver MW, McMillan RP, et al. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab 2014; 11 : 10. [Google Scholar]
- Lee I-K. The role of pyruvate dehydrogenase kinase in diabetes and obesity. Diabetes Metab J 2014; 38 : 181-6. [CrossRef] [PubMed] [Google Scholar]
- Vallée A, Lecarpentier Y, Guillevin R, et al. Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci MN 2017; 62 : 368-79. [CrossRef] [Google Scholar]
- Vallée A, Lecarpentier Y, Guillevin R, et al. Thermodynamics in gliomas: Interactions between the canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol 2017; 8 : 352. [CrossRef] [PubMed] [Google Scholar]
- Vallée A, Guillevin R, Vallée J-N. Vasculogenesis and angiogenesis initiation under normoxic conditions through WNT/β-catenin pathway in gliomas. Rev Neurosci 2017; 29 : 71-91. [Google Scholar]
- Yue X, Lan F, Yang W, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 2010; 1366 : 27-37. [Google Scholar]
- Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 2011; 76 : 347-53. [CrossRef] [PubMed] [Google Scholar]
- McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 2004; 490 : 13-24. [CrossRef] [PubMed] [Google Scholar]
- Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452 : 230-3. [Google Scholar]
- Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011; 42 : 719-30. [Google Scholar]
- Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150 : 685-96. [Google Scholar]
- Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105 : 18782-7. [CrossRef] [Google Scholar]
- Tefera TW, Tan KN, McDonald TS, et al. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis. Neurochem Res 2017; 42 : 1610-20. [Google Scholar]
- Browne SE, Yang L, DiMauro J-P, et al. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol Dis 2006; 22 : 599-610. [CrossRef] [PubMed] [Google Scholar]
- Xie T, Deng L, Mei P, et al. Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol. Aging 2014; 35 : 1778.e9-1778.e23. [Google Scholar]
- Kim JE, Hong YH, Kim JY, et al. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PloS One 2017; 12 : e0176462. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.