Free Access
Issue
Med Sci (Paris)
Volume 34, Number 2, Février 2018
Page(s) 145 - 154
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183402012
Published online 16 February 2018
  1. Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 2008; 49 : 7-19. [CrossRef] [PubMed] [Google Scholar]
  2. Beaven MA. Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 2009; 39 : 11-25. [CrossRef] [PubMed] [Google Scholar]
  3. Dahlin JS, Ding Z, Hallgren J. Distinguishing mast cell progenitors from mature mast cells in mice. Stem Cells Dev 2015; 24 : 1703-11. [Google Scholar]
  4. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77 : 1033-79. [Google Scholar]
  5. Sasaki H, Kurotaki D, Tamura T. Regulation of basophil and mast cell development by transcription factors. Allergol Int 2016; 65 : 127-34. [Google Scholar]
  6. Edling CE, Hallberg B. c-Kit--a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 2007; 39 : 1995-8. [CrossRef] [PubMed] [Google Scholar]
  7. Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 2009; 31 : 185-205. [Google Scholar]
  8. Dahlin JS, Malinovschi A, Ohrvik H, et al. Lin- CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood 2016; 127 : 383-91. [Google Scholar]
  9. Welle M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol 1997; 61 : 233-45. [CrossRef] [PubMed] [Google Scholar]
  10. Kitamura Y, Kasugai T, Arizono N, Matsuda H. Development of mast cells and basophils: processes and regulation mechanisms. Am J Med Sci 1993; 306 : 185-91. [CrossRef] [Google Scholar]
  11. Ruitenberg EJ, Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature 1976; 264 : 258-60. [Google Scholar]
  12. Irani AM, Schwartz LB. Human mast cell heterogeneity. Allergy Proc 1994; 15 : 303-8. [CrossRef] [Google Scholar]
  13. Irani AM, Craig SS, DeBlois G, et al. Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J Immunol 1987; 138 : 4381-6. [PubMed] [Google Scholar]
  14. Cruse G, Metcalfe DD, Olivera A. Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34 : 219-37. [CrossRef] [PubMed] [Google Scholar]
  15. Dawicki W, Marshall JS. New and emerging roles for mast cells in host defence. Curr Opin Immunol 2007; 19 : 31-8. [Google Scholar]
  16. McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 2015; 519 : 237-41. [Google Scholar]
  17. Brennan TA, Lindborg CM, Bergbauer CR, et al. Mast cell inhibition as a therapeutic approach in fibrodysplasia ossificans progressiva (FOP). Bone 2017. pii: S8756-3282(17)30319-8. doi: 10.1016/j.bone.2017.08.023. [Google Scholar]
  18. Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer. Adv Exp Med Biol 2011; 716 : 270-88. [CrossRef] [Google Scholar]
  19. Valent P, Akin C, Hartmann K, et al. Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Res 2017; 77 : 1261-70. [Google Scholar]
  20. Denham JW, Hauer-Jensen M. The radiotherapeutic injury-a complex wound. Radiother Oncol 2002; 63 : 129-45. [Google Scholar]
  21. Francois A, Milliat F, Jullien N, et al. Radiothérapie: quelles orientations thérapeutiques contre les séquelles digestives ? Med Sci (Paris) 2009; 25 : 267-72. [Google Scholar]
  22. Chopra RR, Bogart JA. Radiation therapy-related toxicity (including pneumonitis and fibrosis). Emerg Med Clin North Am 2009; 27 : 293-310. [CrossRef] [Google Scholar]
  23. Moriyasu S, Yamamoto K, Kureyama N, et al. Involvement of histamine released from mast cells in acute radiation dermatitis in mice. J Pharmacol Sci 2007; 104 : 187-90. [CrossRef] [PubMed] [Google Scholar]
  24. Riekki R, Harvima IT, Jukkola A, et al. The production of collagen and the activity of mast-cell chymase increase in human skin after irradiation therapy. Exp Dermatol 2004; 13 : 364-71. [Google Scholar]
  25. Westbury CB, Freeman A, Rashid M, et al. Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer. Radiother Oncol 2014; 111 : 206-11. [Google Scholar]
  26. Majori M, Poletti V, Curti A, et al. Bronchoalveolar lavage in bronchiolitis obliterans organizing pneumonia primed by radiation therapy to the breast. J Allergy Clin Immunol 2000; 105 : 239-44. [CrossRef] [PubMed] [Google Scholar]
  27. Lemay AM, Haston CK. Radiation-induced lung response of AcB/BcA recombinant congenic mice. Radiat Res 2008; 170 : 299-306. [Google Scholar]
  28. Haston CK, Begin M, Dorion G, Cory SM. Distinct loci influence radiation-induced alveolitis from fibrosing alveolitis in the mouse. Cancer Res 2007; 67 : 10796-803. [Google Scholar]
  29. Thomas DM, Fox J, Haston CK. Imatinib therapy reduces radiation-induced pulmonary mast cell influx and delays lung disease in the mouse. Int J Radiat Biol 2010; 86 : 436-44. [CrossRef] [PubMed] [Google Scholar]
  30. Ustun C, DeRemer DL, Akin C. Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 2011; 35 : 1143-52. [Google Scholar]
  31. Down JD, Medhora M, Jackson IL, et al. Do variations in mast cell hyperplasia account for differences in radiation-induced lung injury among different mouse strains, rats and nonhuman primates? Radiat Res 2013; 180 : 216-21. [Google Scholar]
  32. Haddadi GH, Rezaeyan A, Mosleh-Shirazi MA, et al. Hesperidin as radioprotector against radiation-induced lung damage in rat: a histopathological study. J Med Phys 2017; 42 : 25-32. [Google Scholar]
  33. Raghunathan D, Khilji MI, Hassan SA, Yusuf SW. Radiation-Induced Cardiovascular Disease. Curr Atheroscler Rep 2017; 19 : 22. [CrossRef] [Google Scholar]
  34. Boerma M, Wang J, Wondergem J, et al. Influence of mast cells on structural and functional manifestations of radiation-induced heart disease. Cancer Res 2005; 65 : 3100-7. [Google Scholar]
  35. Sridharan V, Tripathi P, Sharma S, et al. Roles of sensory nerves in the regulation of radiationinduced structural and functional changes in the heart. Int J Radiat Oncol Biol Phys 2014; 88 : 167-74. [CrossRef] [PubMed] [Google Scholar]
  36. Boerma M. Experimental radiation-induced heart disease: past, present, and future. Radiat Res 2012; 178 : 1-6. [Google Scholar]
  37. Zheng H, Wang J, Hauer-Jensen M. Role of mast cells in early and delayed radiation injury in rat intestine. Radiat Res 2000; 153 : 533-9. [Google Scholar]
  38. Gruber BL, Marchese MJ, Kew RR. Transforming growth factor-beta 1 mediates mast cell chemotaxis. J Immunol 1994; 152 : 5860-7. [Google Scholar]
  39. Wang J, Zheng H, Hollenberg MD, et al. Up-regulation and activation of proteinase-activated receptor 2 in early and delayed radiation injury in the rat intestine: influence of biological activators of proteinase-activated receptor 2. Radiat Res 2003; 160 : 524-35. [Google Scholar]
  40. Wang J, Boerma M, Kulkarni A, et al. Activation of protease activated receptor 2 by exogenous agonist exacerbates early radiation injury in rat intestine. Int J Radiat Oncol Biol Phys 2010; 77 : 1206-12. [CrossRef] [PubMed] [Google Scholar]
  41. Blirando K, Milliat F, Martelly I, et al. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol 2011; 178 : 640-51. [Google Scholar]
  42. Bourgier C, Haydont V, Milliat F, et al. Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 2005; 54 : 336-43. [Google Scholar]
  43. Durand C, Pezet S, Eutamene H, et al. Persistent visceral allodynia in rats exposed to colorectal irradiation is reversed by mesenchymal stromal cell treatment. Pain 2015; 156 : 1465-76. [Google Scholar]
  44. Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005; 6 : 135-42. [Google Scholar]
  45. Blirando K, Milliat F, Martelly I, et al. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol; 178 : 640-51. [Google Scholar]
  46. Galli SJ, Kalesnikoff J, Grimbaldeston MA, et al. Mast cells as tunable effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23 : 749-86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.